摘要 - 数十年来已经建立了左右大脑优势理论。此外,左脑和右脑平衡教育概念和培训也已经开发了多年。目前,确定一个人是左脑还是右脑主导地位的唯一方法是进行问卷评估。没有科学数据可以直接反映大脑活动,以证明左脑和右脑理论以及左脑发育训练的有效性。因此,在这项研究中,其目的是确定脑电图(EEG)信号是否与大脑优势水平有任何相关性。通过使用Hermann Brain Dominance工具(HBDI)测试来确定和基准确定和基准,这是一种流行的测试工具,该工具由无数跨国公司使用,以确定员工的大脑优势水平。由于被捕获的原始脑电图信号很复杂且嘈杂,因此使用了几种预处理方法来从获得的信号中有效消除不良的噪声和伪影。这些技术是基线校正方法,去除电线噪声和独立的组件分析(ICA)。此外,很难从具有高复杂性的基于时间的脑电图信号中确定重要特征。因此,实施了EEG地形频谱密度百分比(EEGTPSDP)方法来分析EEG信号。通过使用EEGTPSDP方法计算的结果,它证明了一个半球的大脑优势水平与脑电图频谱密度之间存在很强的相关性。因此,根据脑电图信号,这项研究能够验证左和右脑部优势理论。实施的EEGTPSDP方法可用于对一个人的主要大脑进行分类。以这种方式,这项研究能够通过确定学生的大脑优势水平并根据科学方法根据脑电图信号来跟踪他们的学习进度来为教育领域做出贡献。
工程组件和结构细节可能会处于完全不同的负载条件下:高周期或低周期疲劳(具有恒定或可变幅度),静态载荷和/或过载,振动,蠕变,应力腐蚀 - 只是引用了一些例子。无论负载条件是什么,对结构细节的结构完整性的评估都必须确保与潜在的灾难性后果的意外故障保持足够的安全边缘。通过使用理论,数值和实验方法通常合并的理论,数值和实验方法来追求这个目标。例如,实验室测试以估计基本材料特性或进行全尺度测试,以验证实施合适强度模型的有限元分析。最常见的是,科学研究通过提出非常规强度标准,开发数值技术或测试传统材料和先进材料的特定类别的耐用性来分别处理这些领域。本研究主题的四篇论文通过理论和/或实验研究介绍了一些上述研究主题,这些研究涵盖了从机械到土木工程的应用领域。Gaidai等人的论文。提出了一种基于极端价值统计和双变量校正方法的风力涡轮机(FWT)系泊系统中极端响应的方法。作为案例研究,该方法应用于10 MW大三叶fwt。通过开源仿真工具快速(疲劳,空气动力学,结构和湍流),对FWT进行了完全耦合的空气氧弹性 - 弹性 - 弹药动态分析。快速工具计算了叶片上的空气动力载荷,除了结构性动态响应外,除了结构性动态响应以外,在半可覆盖的平流上的流体动力载荷,并最终在不同的操作条件下返回了风力涡轮机的锚点张力和潮流运动的时间序列,并在
摘要。用于调查,评估和预期气候变化,已经设计了数十个全球气候模型(GCM),每种都对地球系统进行建模略有不同。要从不同的模拟和输出中提取强大的信号,通常将模型收集到多模型集合(MME)中。然后以各种方式汇总这些内容,包括(可能加权的)多模型手段,中值或分位数。在这项工作中,我们引入了一种称为“ alpha Pooling”的新概率聚合方法,该方法构建了一个累积的累积分布函数(CDF),旨在在校准(历史)期间更接近参考CDF。然后可以使用聚合的CDF来对原始气候模拟进行偏置调整,因此进行“多模型偏置校正”。在实践中,每个CDF都是根据取决于参数α的非线性转换而转换的。然后,将重量分配给每个转换的CDF。此权重是CDF紧密度与参考转换的CDF的增加功能。键合的键是一个参数α,它描述了转化的类型,因此汇总的类型,将线性和对数线性池化方法均赋予。我们首先确定α池是通过验证某些最佳特性来适当的聚集方法。然后,着重于西欧温度和降水量的气候模型模拟,为了评估α汇合的性能,以针对当前可用的方法(包括多模型平均值和加权变体)的性能。基于重新分析的评估以及完美的模型实验以及对气候模型集的灵敏度分析。我们的发现证明了所提出的合并方法的优越性,表明α池提出了一种结合GCM CDF的有效方法。这项研究的结果还表明,我们对多模型偏置校正的CDF合并策略的独特概念是通常的by-GCM-GCM偏置校正方法的可靠替代方法,可以一次允许处理和考虑几种气候模型。
BS 7671 的先前版本(包括 2015 年对第 17 版的修订)并未以明显的方式解决能源效率问题。减少配电和分支电路电缆电压降的要求主要侧重于确保设备在使用点正常运行。但是,在使用点拥有正确的电压也会影响某些电气设备的运行效率。正确的载流能力要求可降低电缆尺寸过小的风险以及随后的火灾风险。但是,拥有正确尺寸的电缆也是解决某些类型电气设备谐波导致的效率低下的有效工具。在《布线规定》中,任何关于控制和电路切换的讨论都是关于安全的工作系统和功能操作。但是,之前没有明确提到在自动降低能耗的背景下使用控制。近年来,控制照明的传感器已变得很普遍,并与功能切换结合使用。电气能效标准强调的正是这些自动切换和控制。以前曾考虑过功率因数校正 (PFC) 设计,但通常只考虑进线配电板以改善供电点的负载特性。能源效率的前提是减少整个配电基础设施的压力,从使用点到供电点。设计师应该从整体上考虑整个安装的能源效率。例如,只关注主配电板的功率因数校正可能已经不够了。现在应该考虑其他功率因数校正方法,包括:(a) 直接连接到大型设备(如冷水机组)的小型 PFC 单元;(b) 使用更高效的设备,这意味着实际上需要更少的 PFC;或 (c) 直接连接到本地配电板的小型 PFC。虽然没有解决能源效率问题,但浪涌保护装置遵循类似的集成模型,并且在整个电气安装中得到越来越多的使用。在整个配电系统中,应考虑使用浪涌保护模型、局部 PFC 和谐波滤波器来帮助提高能源效率。这种方法将优化整个安装并可能减少过大的电缆。
4.1.3.2 伽马技术 ................................................................................................ 56 4.1.3.3 量热法 .......................................................................................................... 57 4.1.4 环境和电磁效应 ................................................................................................ 57 4.1.4.1 中子技术 ...................................................................................................... 58 4.1.4.2 伽马技术(包括 XRF) ...................................................................... 58 4.1.4.3 量热法 ...................................................................................................... 59 4.2 基质和均匀性效应 ................................................................................................ 59 4.2.1 中子技术 ...................................................................................................... 59 4.2.2 中子技术的基质校正方法 ................................................................................ 60 4.2.2.1 附加源(AAS) ............................................................................................. 60 4.2.2.2 通量探针 ............................................................................................................. 62 4.2.2.3环比 ................................................................................................................ 63 4.2.2.4 多重性技术 .............................................................................................. 63 4.2.2.5 成像算法 .............................................................................................. 64 4.2.2.6 实时射线照相术 (RTR) ............................................................................. 64 4.2.2.7 操作员选择的校准 ...................................................................................... 64 4.2.2.8 镉衬里 ...................................................................................................... 65 4.2.3 伽马技术 ...................................................................................................... 65 4.2.4 伽马技术的矩阵校正方法 ............................................................................. 66 4.2.5 量热法 ............................................................................................................. 67 4.2.6 μ 子探测 ............................................................................................................. 67 4.3 样品特定属性 ............................................................................................................. 67 4.3.1 中子技术 ............................................................................................................. 68 4.3.1.1 化学形式 ................................................................................................ 68 4.3.1.2 其他发射中子的放射性核素 .............................................................. 68 4.3.1.3 源分布的影响 ................................................................................ 68 4.3.1.4 中子自倍增效应 ...................................................................................... 68 4.3.1.5 自屏蔽效应 .............................................................................................. 69 4.3.2 伽马技术 ........................................................................................................ 70 4.3.2.1 源分布效应 ........................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 ...................................................................... 70 4.3.2.3 非伽马发射体/弱伽马发射体 ............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ................................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................................ 82 5.2.3 文档记录 ................................................................................................................ 83 5.3 参考标准 ................................................................................................................ 85 5.4 工作标准 ................................................................................................................ 86 5.5 不确定度 ...................................................................................................................... 87 6 不确定度的处理 ............................................................................................. 90 6.1 范围 ............................................................................................................................. 91 6.2 什么是测量不确定度? ............................................................................................. 91 6.3 评估测量不确定度的步骤 ............................................................................................. 92 6.4 示例 ............................................................................................................................. 971 源分布的影响 ................................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 .............................................................................. 70 4.3.2.3 非伽马辐射源/弱伽马辐射源 .............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ............................................................................................................. 79 5.2.2 位置依赖性 ............................................................................................................. 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准................................................................................................................ 85 5.4 工作标准.............................................................................................................. 86 5.5 不确定度.............................................................................................................. 87 6 不确定度的处理........................................................................ 90 6.1 范围................................................................................................................ 91 6.2 什么是测量不确定度? ...................................................................................... 91 6.3 测量不确定度的估算步骤 ............................................................................. 92 6.4 示例............................................................................................................. 971 源分布的影响 ................................................................................................ 70 4.3.2.2 自屏蔽(自衰减)效应 .............................................................................. 70 4.3.2.3 非伽马辐射源/弱伽马辐射源 .............................................................. 71 4.3.3 量热法 ............................................................................................................. 71 4.4 统计约束 ............................................................................................................. 72 4.5 操作约束 ............................................................................................................. 72 5 特性和校准 ............................................................................................. 73 5.1 校准要求 ............................................................................................................. 76 5.2 校准程序 ............................................................................................................. 79 5.2.1 校准功能 ............................................................................................................. 79 5.2.2 位置依赖性 ............................................................................................................. 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准................................................................................................................ 85 5.4 工作标准.............................................................................................................. 86 5.5 不确定度.............................................................................................................. 87 6 不确定度的处理........................................................................ 90 6.1 范围................................................................................................................ 91 6.2 什么是测量不确定度? ...................................................................................... 91 6.3 测量不确定度的估算步骤 ............................................................................. 92 6.4 示例............................................................................................................. 9772 5 特性和校准 ................................................................................ 73 5.1 校准要求 ...................................................................................................... 76 5.2 校准程序 ...................................................................................................... 79 5.2.1 校准功能 ................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................ 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准 ............................................................................................................. 85 5.4 工作标准 ............................................................................................................. 86 5.5 不确定性 ............................................................................................................. 87 6 不确定性的处理 ............................................................................. 90 6.1 范围 ............................................................................................................. 91 6.2 什么是测量不确定度? ........................................................................... 91 6.3 测量不确定度评估步骤 .............................................................................. 92 6.4 示例 .............................................................................................................. 9772 5 特性和校准 ................................................................................ 73 5.1 校准要求 ...................................................................................................... 76 5.2 校准程序 ...................................................................................................... 79 5.2.1 校准功能 ................................................................................................ 79 5.2.2 位置依赖性 ................................................................................................ 82 5.2.3 文档 ............................................................................................................. 83 5.3 参考标准 ............................................................................................................. 85 5.4 工作标准 ............................................................................................................. 86 5.5 不确定性 ............................................................................................................. 87 6 不确定性的处理 ............................................................................. 90 6.1 范围 ............................................................................................................. 91 6.2 什么是测量不确定度? ........................................................................... 91 6.3 测量不确定度评估步骤 .............................................................................. 92 6.4 示例 .............................................................................................................. 97........................................... 91 6.3 测量不确定度评估步骤 ...................................................................... 92 6.4 示例 .......................................................................................................... 97........................................... 91 6.3 测量不确定度评估步骤 ...................................................................... 92 6.4 示例 .......................................................................................................... 97
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器
(HbO) 和脱氧 (HbR) 血红蛋白可以分别评估 HbO 和 HbR 的浓度变化。1 尽管 fNIRS 信号被认为对运动具有相对耐受性,2 但是由于运动伪影引起的光强度突然变化,数据质量可能会降低。3 结果表明,两种波长的动态特性为伪影检测和校正提供了重要信息。4 然而,当前用于运动伪影校正的技术(例如小波滤波、分解、样条插值等)通常假设两种波长的行为在时间上相似,因此无法利用两种波长提供的结构化信息。5 – 7 二维 (2D) 分析要求对具有更多维度的数据(例如 fNIRS 数据)在处理之前进行表面展开,例如分别处理两种波长或 HbO 和 HbR。因此,其中一些二维分析工具被迫施加其他非生理约束,例如主成分分析(PCA)中的正交性或独立成分分析(ICA)的统计独立性。尽管有几种方法可以实现 PCA,例如降维、分类、从信号分解的角度来看,PCA 旨在提取所谓的主成分,即可解释 fNIRS 中信号活动最大方差的成分。6、7、10、11 在时间 PCA 中,数据被分解为成分之和,每个成分由两个向量的乘积形成:一个代表时间主成分,另一个代表相应的地形(每个通道的分数)。PCA 的一个基本问题是仅由两个特征(时间和空间)定义的成分不是唯一确定的。因此,不同成分的对应时间特征之间必须具有正交性。 7、12、13然而,脑信号之间的正交性是一种非生理约束。即使有这种限制,提取的主成分也不是完全唯一的,因为任意旋转轴不会改变数据的解释方差。这导致研究人员使用不同的数学标准作为选择特定旋转的基础(例如,Varimax、Quartimax 和 Promax)。在 fNIRS 中,PCA 还被应用于目标时间间隔(tPCA),即仅在与发音或其他头部运动相关的伪影发生的期间,而不是在整个未分割的信号期间。3、14与基于小波的滤波和样条插值相比,这种类型的有针对性的校正可以产生更好的信号质量,同时也降低了改变信号整体完整性的风险。3虽然 PCA 非常常见且易于使用,一些作者已经讨论了其作为伪影校正方法的缺陷和注意事项。5、15
电信系统研究所伊戈尔·西科斯基基辅理工学院,乌克兰基辅背景。在监测旋转机器(尤其是重型机器)的振动时,传感器电缆经常会出现问题。这些电缆通常很长、很重且容易损坏。目的。本文的目的是基于 MEMS 加速度计开发一种没有这些问题的无线振动传感器。开发的传感器应提供低功耗、至少在 10…1000 Hz 范围内的线性频率响应、计算振动 RMS 并在此基础上检测机器状况。方法。开发基于 8 位 MCU 的无线传感器设计。开发基于频谱分析的 MEMS 频率响应校正方法。将开发的传感器与工业压电传感器进行比较。结果。开发的传感器可代替工业压电振动传感器。此外,基于 MEMS 的传感器允许将基本的机器状态检测过程从高级系统转移到传感器级。这反过来又允许减少网络流量并简化整个状态监测系统。结论。开发了用于状态监测的基于 MEMS 的无线振动传感器。进行的测试表明,所开发的传感器性能良好,其精度可与工业压电传感器相媲美。关键词:振动;MEMS 加速度计;无线振动传感器;Wi-Fi;旋转机械监测。1. 简介在重型机械(蒸汽轮机、发电机、造纸机)的状态监测系统中,传感器的连接是一个问题。目前不使用具有电荷输出的传统压电加速度计,因为它们的电缆长度(通过电缆容量)甚至电缆安装(由于摩擦电噪声)都会影响传感器的输出信号。具有 ICP 输出的加速度计不受传统加速度计的限制,但在重型机器上安装这些传感器时需要使用数十米长的屏蔽电缆。由于长度和重量,使用这种电缆不方便。此外,人员在机器维护过程中经常会损坏长电缆及其连接器。解决该问题的一个可能方法是使用无线通信传输测量的振动数据。但是,带有无线发射器和 ICP 传感器的测量模块需要大功率电源才能确保其运行。因此,必须考虑使用基于微机电系统 (MEMS) 加速度计的传感器,以便为状态监测和诊断系统提供小型、低功耗的替代方案,以取代传统的工业测量系统。除了质量小、功耗低之外,基于 MEMS 的传感器将比工业传感器便宜得多,从而能够使用状态监测系统
空间已成为私营部门和公共部门越来越活跃的运营领域。至关重要的是,国防部(DND)具有准确的手段,以保持对部署的太空资产以及周围威胁的能见度和控制。太空域意识(SDA)是一个概念,它是指对部署的太空资产和其他对象的监视和跟踪,以确保运营安全性。当前的SDA方法包括使用地面和太空光学望远镜,以及在上部频段中运行的雷达。两个线元素集(TLE)是轨道数据最易于访问的手段,并提供轨道位置预测,其精度的精度高达1 km,速度为1 m/s。较小的航天器的日益普及,例如立方体和微型卫星作为进行太空操作的经济手段,这增加了对更准确的SDA的需求。本文测试了使用高频(HF)雷达使用视线(LOS)传播和目标检测来实现准确范围和径向速度估计的可行性。国际空间站(ISS)被选为目标,这是由于其尺寸较大和轨道较低的高度。使用20 MHz的工作频率用于刺穿电离层并照亮所选目标。范围多普勒图,并应用校正以补偿大气和滤波器误差。通过夜间传输期和日期传播期比较了电离层在不同水平的太阳能活动中的效果。使用澳大利亚开源软件的总电子含量(TEC)估计计算范围误差,该估计是澳大利亚开源软件提供的高频射线疗法实验室(PHARLAP)。发现,夜间传输不需要高估的TEC,并且不需要校正,而白天的传输测量结果受到较大TEC的极大影响。白天传输产生的估计的电离层范围延迟高达90 km,多普勒校正高达45 Hz。夜间传输的平均延迟为30公里,多普勒校正最大15 Hz。校正后的最终范围测量值在100秒的可见度中,在夜间传输期间,在100秒的可见度中,均方根误差(RMSE)为61 km。具有如此高范围残差,发现HF不适合精确的范围测量值,除非开发出更好的电离层校正方法并应用了更密集的信号处理技术。然而,夜间和白天传播的多普勒测量值均产生的剩余RMSE小于10 Hz。夜间传输范围率残差仅为85 m/s,在TLE精度的误差范围内。这表明HF可用于使用多普勒测量值进行精确测定。
摘要:在各个领域,包括自动驾驶汽车,医疗诊断,工业自动化和航空航天系统在内的人工智能(AI)算法与安全至关重要的应用的整合变得越来越普遍。这些应用在很大程度上依赖于AI来做出直接影响人类安全,经济稳定和运营效率的决策。鉴于这些任务的批判性质,必须严格评估AI算法的可靠性,以确保它们在所有条件下始终如一地执行。可靠性是指在定义的操作条件下在特定时期内在特定时期内在没有失败的情况下发挥作用的能力。在安全至关重要的域中,即使在AI决策中遇到的小错误或不一致之处也可能导致灾难性的结果,例如涉及自动驾驶汽车的交通事故,不正确的医疗诊断,导致不正确的治疗方法,或者导致工业过程中的失败,可能导致昂贵的停机时间甚至人类的伤亡。在这些领域中,AI技术的复杂性和部署的日益增长强调了迫切需要对AI可靠性进行全面理解和评估。本文提供了对设计注意事项和方法的详细分析,以增强AI算法的可靠性。讨论开始于探索AI系统中可靠性的基本原则,重点是理论和实际观点。我们研究影响可靠性的关键因素,包括数据质量,算法鲁棒性,模型解释性和系统集成。然后,本文深入研究了各种可靠性评估技术,例如容错机制,错误检测和校正方法,冗余性和验证过程。为了对AI的可靠性有更深入的了解,我们介绍了量化可靠性指标的数学模型和统计评估技术。例如,介绍了使用指数分布,蒙特卡洛模拟进行概率可靠性分析的可靠性建模以及使用Jacobian矩阵的错误传播研究。我们还探讨了机器学习特定的可靠性指标的使用,例如接收器操作特征(ROC)分析中的曲线(AUC)领域(AUC),这有助于评估AI在关键决策环境中的性能。此外,本文解决了确保AI可靠性的当前挑战和局限性,包括计算复杂性,道德考虑和法规合规性问题。我们强调了开发AI模型的困难,这些AI模型可以在各种现实世界中保持其可靠性。偏见的潜力,AI决策中缺乏透明度以及解释复杂AI模型的困难也带来了重大障碍,需要解决以提高可靠性。本文讨论的发现和方法旨在更深入地了解AI可靠性的复杂景观,为研究人员,从业人员和决策者提供了一个框架,以开发更安全,更可靠的AI系统,这些系统可以信任在安全环境中运行的安全性。关键字:可靠性,AI算法,安全性,申请