在绿色和烧结状态的3D印刷电极上进行了三个弯曲测试。对经受热烧结步骤的优惠券的尺寸进行了缩放,以考虑收缩。根据ASTM C1161设计和测试了测试样品。测试是在具有100 N负载电池的通用仪器系统上进行的。使用等式计算弯曲强度。2,其中p是断裂力,l外部(支撑)跨度,b标本宽度和d样品厚度。
摘要:氧化钇(Y 2 O 3 )因其在各种高强度结构部件、微电子和光电子器件中的潜力而受到关注,但这种有前途的材料的非线性光学研究尚未实施。本文不仅理论计算了Y 2 O 3 的电子能带结构,而且以光纤激光器为平台验证了Y 2 O 3 的光学非线性。同时,通过使用不同厚度的Y 2 O 3 可饱和吸收体,进一步探究了样品厚度对激光性能的影响。结果表明Y 2 O 3 不仅具有良好的光学非线性,而且通过调节Y 2 O 3 的厚度有利于超快光子的研究。因此,Y 2 O 3 可以作为一种潜在的可饱和吸收体候选者进行深入的研究和应用。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
磁性 skyrmion 是未来大数据密度存储设备的有希望的候选者。人们已经发现,在室温条件下,有各种各样的材料可以承载 skyrmion。通常在透射电子显微镜 (TEM) 中进行的洛伦兹显微镜是表征真实空间中 skyrmion 样本的最重要工具之一。通过数值计算,这项工作将 TEM 中的相位对比度与孤立 N'eel 或 Bloch skyrmion(两种最常见的 skyrmion 类型)的实际磁化曲线联系起来。在所使用的 skyrmion 模型框架内,对于纯磁性样品,结果与 skyrmion 尺寸和壁宽以及样品厚度的比例无关。提供了简单的规则来提取纯 Bloch 或 N'eel skyrmion 的实际 skyrmion 配置,而无需模拟。此外,还介绍了符合实验预期的 N'eel skyrmion 上的首次微分相位对比度 (DPC) 测量,并展示了所描述的原理。这项工作与材料科学相关,它可以通过便捷的表征来实现 skyrmion 轮廓的设计。
摘要:铯134和-137在核事故期间普遍存在,长期寿命,可射线毒性污染物释放到环境中。在福岛daiichi核事故期间,大量不溶性,可呼吸CS的微粒(CSMP)释放到环境中。对环境样品中CSMP的监测对于了解核事故的影响至关重要。用于筛选CSMP的当前检测方法(磷光筛查放射自显影)慢效。我们提出了一种改进的方法:使用平行电离乘数气态检测器的实时放射自显影术。该技术允许对放射性的空间解决测量值,同时从空间异质样品中提供光谱数据,一种潜在的级别变化技术,可用于核事故后用于法医分析。使用我们的检测器配置,可检测到CSMP的最小可检测活动足够低。此外,对于环境样品,样品厚度不会对检测器信号质量造成不利影响。检测器可以测量和解决相距≥465μm的单个放射性颗粒。实时放射自显影是放射性颗粒检测的有前途的工具。
尽管聚合物在我们的房屋和工业应用中都广泛使用,但在暴露于恶劣的环境条件下(例如升高温度或辐射)时,对其降解机制的关键见解缺乏可量化的指标。在氧化环境中,聚合物降解以热氧化或光氧化为主导,在许多情况下,整个厚度都以异质方式发生。虽然聚合物的异质氧化是一种常见现象,但对聚合物的功能寿命的影响尚不清楚。评估这种氧化的方法是耗时的,是实施的挑战。在这里,我们展示了一种新的方法,用于使用快速准确的颜色测量技术对聚生物中异质氧化的定量评估。提出的颜色分析方法旨在提高在共同伴随的一半时间(例如凹陷或傅立叶变换红外光谱法)中获得异质氧化谱的效率。此外,通过使用能量色散X射线光谱法通过样品厚度绘制氧气浓度来验证该方法。通过生成氧化框架来证明所提出的方法的实用性,该框架针对聚合物寿命预测的实验设计。我们预计这项工作将成为使用光学特性评估聚合物中异质氧化的起点。
鉴于拓扑自旋纹理在信息存储技术中的潜在应用,其生成和控制是现代自旋电子学最令人兴奋的挑战之一。特别令人感兴趣的是磁绝缘体,由于其低阻尼、无焦耳加热和减少的耗散,可以提供节能的自旋纹理平台。本文证明了样品厚度、外部磁场和光激发之间的相互作用可以产生大量的自旋纹理,以及它们在绝缘 CrBr 3 范德华 (vdW) 铁磁体中的共存。使用高分辨率磁力显微镜和大规模微磁模拟方法,证明了 T-B 相图中存在一个大区域,其中存在不同的条纹畴、skyrmion 晶体和磁畴,并且可以通过相位切换机制进行内在选择或相互转换。洛伦兹透射电子显微镜揭示了磁性纹理的混合手性,在给定条件下属于布洛赫类型,但可以通过厚度工程进一步操纵为尼尔类型或混合类型。可以通过标准光致发光光学探针进一步检查不同磁性物体之间的拓扑相变,该探针通过圆偏振分辨,表明存在激子-skyrmion耦合机制。研究结果表明,vdW磁绝缘体是一种有前途的材料框架,可用于操纵和生成与原子级设备集成相关的高度有序的skyrmion晶格。
简介我们正处于 3D 纳米成像方法飞速发展的时代。电子断层扫描可用于以原子分辨率对纳米粒子进行成像,但当样品厚度接近 1 µ m 时,多重散射效应开始降低可实现的空间分辨率。在可见光显微镜中,稀疏纳米粒子或可切换荧光团可以定位到厚度约为 1 µ m 的样品层中的几纳米范围内,而共聚焦和多光子显微镜可用于对厚度高达几百微米的样品实现大约 200 纳米的分辨率。然而,X 射线的独特之处在于它能够穿透毫米级样品,再加上相对缺乏多重散射和纳米级波长,从而实现高空间分辨率 [1]。随着同步加速器光源设施的不断改进,可用的准时间连续相干 X 射线通量几十年来一直以与电子学中的摩尔定律类似的速度增长,如图 1 所示。高相干通量通过提供足够的光子来对精细、低对比度的特征进行成像,使空间分辨率可以推至 10 纳米以下 [2]。进一步的增加将允许更快的成像、更大的视野,以及从对单个样本进行成像到从多个样本中获得具有统计意义的见解的能力。
摘要:异质性超导性发作是Cuprate和基于铁的家族的高-T C超级导管的常见现象。它是由从金属到零抗性状态的相当广泛的过渡表现出来的。通常,在这些强烈的各向异性材料中,超构型(SC)首先显示为孤立域。这会导致t c以上的各向异性过量电导率,并且传输测量值提供了有关样品内部深处的SC结构域结构的宝贵信息。在大量样品中,这种各向异性SC发作给出了SC晶粒的平均形状,而在薄样品中,这也表明SC晶粒的平均大小。在这项工作中,在各种厚度的FESE样品中,测量了层中的和内层的电阻率。为了测量层间电阻率,使用FIB制造了跨层的FESE MESA结构。随着样品厚度的降低,观察到超导过渡温度T C的显着增加:T C在厚度〜40 nm的微生物中从散装物质的8 K提高到12 K。我们应用了分析和数值计算来分析这些数据和早期数据,并发现了FESE中SC域的纵横比和大小与我们的电阻率和Diamamnetic响应测量相一致。我们提出了一种简单且相当准确的方法,用于估计各种小厚度样品中T C各向异性的SC域的长宽比。讨论了FESE中的nematic和超导域之间的关系。我们还将分析公式推广到异质各向异性超级导管中的电导率,以与两个具有相等体积分数的两个垂直方向的细长SC结构域的情况,对应于基于Fe的各种FE基超导体中的nematic结构域结构。