成为数据中心集线器。这些设施是能量典范也不是什么秘密。实际上,据估计,到2030年,仅数据中心的电力需求将增加7.7GW。马来西亚将如何应对这些大力需求?根据马来西亚不断增长的能源需求,副总理拿督斯里·法迪拉·尤索夫(Datuk Seri Fadillah Yusof)也是能源过渡和水转化部长的说法,该国正在探索所有潜在的解决方案,以满足其能源需求,包括核电。支持者认为,核能提供了一致且大规模的电源,可以支持该国的经济增长而不增加碳排放。这很重要,因为马来西亚的目标是到2050年净零排放。值得注意的是,联合国第28届当事方会议在2050年到2050年将有20多个国家承认核能的三倍。但是,没有解决方案可以长期管理高级放射性废物,这可能会危害数千万到数百万年。根据世界核协会(WNA)的说法,由于铀高度放射性的性质和4'/20亿年的半衰期的4'/20亿年的半衰期,唯一的处理方法是将其存储在深层地质储存库中。此外,诸如福岛核事故等灾难导致许多国家重新考虑核电在其能源组合中的作用。这包括马来西亚,马来西亚在2018年采取了无核的立场。Mypower Corp首席执行官Siti Safinah Salleh表示,可以理解的是,核能引起了对辐射,操作安全性和放射性废物以及成本影响的安全问题。“这些对我们所有人来说都是重要的问题。无论做出哪种决定,作为一个进步的社会,我们都应该为自己提供知识并做好准备,因为核能可以在该地区开发,并且已经为许多其他国家提供了权力。”在这方面,能源过渡和水务部的特殊机构Mypower
操作员态势感知 (SA) 对于确保任何工业设施安全运行至关重要,对于核电站 (NPP) 更是如此。核电站工业事故(按国际原子能机构 (IAEA) 国际核事件分级表 (INES) [ 1 ] 中 1(异常)至 7(重大事故)的严重程度等级升序排列)包括以下案例:加拿大乔克河国家研究反应堆 (NRX) (INES-5) — 控制室控制棒状态指示灯错误、机械故障以及控制室人员沟通不畅等多重故障导致安全关闭棒库意外拔出,造成反应堆功率在 5 秒内失控超过反应堆设计极限的四倍,导致 1952 年 12 月 12 日发生严重堆芯损坏;美国三哩岛核事故(INES-5)——设计不良、模糊的控制室指示器导致操作员失误,影响了紧急冷却水供应,导致 1979 年 3 月 28 日三哩岛 2 号机组 (TMI-2) 反应堆堆芯安全壳部分熔毁;苏联切尔诺贝利事故(INES-7)——人为因素和固有设计缺陷导致 4 号机组于 1986 年 4 月 26 日发生灾难性爆炸并释放放射性物质。从事故后报告 [ 2 – 4 ] 中可以看出,关键事故前兆包括:(1) 由于传统人机界面 (HMI) 设计中的人为因素相关缺陷导致态势感知能力下降;(2) 常态化、偏差化,导致核安全文化松懈; (3) 信息过载(看而不见效应 [ 5 ]),这是由于通过控制室 HMI(面板指示、通告等)向操作员呈现信息的速度太快。);以及 (4) 高度动态单元演进的错误心理模型导致认知错误,这是由于故障或有故障的传感器提供的工厂信息相互冲突,以及现场设备状态监控不正确。
几十年来,气候变化和可持续发展的支持者一直试图创造一种反叙事,但收效甚微。随着越来越多的国家制定应对气候变化的政策,这种情况开始发生变化。这些反叙事认识到,从化石燃料转型将涉及巨大的成本,但也在讨论通过经济增长战略及其背后的能源结构转变可以实现的诸多共同利益。环境和气候反叙事为可持续发展带来了更强大的愿景:更光明、可再生、清洁能源的未来;绿色和更宜居的城市环境;以及为地球和人类福祉而保护生物多样性。在德国,可持续发展叙事可以说已成为主导叙事,现在推动着政府的政策制定。这不仅对德国很重要,对欧洲也很重要,因为德国是欧盟内最大的经济体,拥有出口导向型制造业。福岛核事故发生后,德国再次决定逐步淘汰核能,同时逐步引入可再生能源。该国最后一座核电站将于 2022 年关闭,结束该国 80 多年的核能历史。与此同时,可再生能源急剧扩张,目前约占发电量的 40%。该国可能无法实现 2020 年温室气体减排目标,因此为未来几年设定了新目标:到 2030 年减排 55%,到 2050 年实现气候中和。为实现这一目标,该国计划进一步扩大可再生能源,大力提高能源效率,重新造林和造林项目,开发清洁技术,氢燃料和电动汽车,改进电池存储技术,改造建筑,提高资源效率,回收和再利用,以及改变农业政策。生态现代化和可持续发展目标的概念在该国根深蒂固。几十年来,该国一直在努力将经济转向更生态合理的方向。正在引入各种机制来加强利益相关方对实施决策的参与,以及协调利益相关方之间的行动和
[1] eDditional办公室,“用于调查核事故的灾难管理机器人的开发”,《灾难研究杂志》,第3卷,第4期,第4页,305-306,2008年8月。[2] Tomoharu doi,Mitsuyoshi Shimaoka,Shigekazu Suzuki,“由技术学院或Kosen教育工作者构想的创意机器人大赛”,《机器人和机械学杂志》,第34卷,第34卷,第34页,第3页,第498-508-508-508-508-508,20222222222.[3] Kenjiro Obara,Satoshi Kakudate,Kiyoshi Oka,Akira Ito,Toshiaki Yagi和Morita Yosuke,“ iTer远程维护的辐射硬度组件的开发”,《机器人和机械学杂志》,《杂志[4] Andrew West,Jordan Knapp,Barry Lennox,Steve Walters,Stephen Watts,“一台小COTS单板计算机用于移动机器人的辐射公差”,核工程和技术,第54卷,第54页,第54页。2198-2203,2022年12月。[5] Zhangli Liu,Zhiyuan Hu,Zhengxuan Zhang,Hua Shao,Hua Shao,Ming Chen,Dawei Bi,Dawei Bi,Bingxu Nig,Ru Wang,Shichang Zou,Shichang Zou,“全部剂量效应在高压记忆力和方法中,核工具和方法” pp.3498-3503,2010年9月。[6] Zhangli Liu Zhiyuan Hu, Zhengxuan Zhang, Hua Shao, Ming Chen, Dawei Bi, Bingxu Ning, Shichang Zou, “Comparison of TID response in core, input/output and high voltage transistors for flash memory,” Microelectronics Reliability, Vol.51, pp.1148-1151, March 2011.[7] Bingxu ning,Zhengxuan Zhang,Zhangli Liu,Zhiyuan Hu,Ming Chen,Ming Chen,Dawei Bi,Shichang Zou,“辐射诱导的浅沟裂缝隔离泄漏在180-NM FLSH内存技术中”[8] Sandhya Chandrashekhar,Helmut Puchner,Jun Mitani,Satoshi Shinozaki,Satoshi Shinozaki,Mohamed Sardi,David Hoffman,“辐射在16 nm浮动大门SLC SLC NAND闪光灯中诱导软沟,Microelectronics Reliaics Reliaics Reliaics”,第108卷,第11331页,第8页。
对各种交叉技术(包括核相关和非核相关技术)的经济潜力和准备情况进行了评估,发现 2030 年之前开始建设的新核电厂的 LCOE 净减少量可达 28-38%,之后最多可减少 65%。短期效益主要来自几种降低资本成本的技术,例如抗震隔离(7-10%)、钢板复合材料和超高性能混凝土(6-8%)、机械部件的模块化结构(4-5%)和高强度钢筋(~2%),而传热涂层(~5%)是唯一具有可比影响的非资本技术。长期效益也主要归功于资本技术,其中大型金属部件的增材制造(3-9%)和海上选址(3-9%)占了大部分效益增长。现有核电站同样有望获利,改造后可在短期内节省相当于 6-8% 的 LCOE 成本,这主要归功于上述涂层。评估的其他技术包括事故容错燃料、先进仪器和控制、先进动力循环、嵌入、能量存储和机器人技术。自三哩岛核事故以来,美国核电站的夜间成本和施工时间增加了两倍,因此此类技术具有巨大的潜力来帮助陷入困境的行业。值得注意的是,这些估计不包括从积累的施工经验中学习到的知识,这可以额外将 LCOE 降低 20-40%,并且是小型模块化反应堆的驱动因素,或从布雷顿循环的次要目标等来源增加收入,这被发现是选择此类替代方案的最可能动机,以及能量存储,其中热存储被确定为最适合核电站。此外,一旦超过相对较低的阈值,传热涂层的耐久性就被认为比热性能对其可行性更重要。尽管上述值定义了可行的节省范围,但在实施过程中必须小心谨慎才能实现这些节省。例如,如果过快实施过多模块化结构,则可能会出现问题,因为它通常不如传统结构灵活。在最近的美国 AP1000 建设中观察到了这个问题。论文指导老师:Jacopo Buongiorno 东京电力公司教授、麻省理工学院核科学与工程系副主任、先进核能系统中心 (CANES) 主任 论文阅读者:David Petti 首席核科学家、研发主任和 INL 实验室研究员
执行摘要 本报告满足了 1954 年原子能法修正案 (AEA) 第 170p 节的法定要求,即 42 USC § 2210(p),向国会提供了能源部 (DOE) 的审查结果和建议,内容涉及继续执行或修改适用于能源部的普莱斯-安德森法 (PAA) 条款的必要性。1 根据法定指示,本报告介绍了核工业的现状、私人保险的可用性、核安全考虑因素和其他相关因素。报告阐述了 PAA 的立法背景,自 1998 年 DOE 根据第 170p 节向国会提交上一次报告以来发生的主要事件,并解释了在发生核事故或预防性撤离时根据 PAA 提供的 DOE 赔偿的主要属性。此外,本报告还总结了能源部在征求公众意见以协助编制报告时收到的评论。最后,本报告总结了能源部对能源部赔偿的经验和应用的分析,以及对公众意见的审查,以得出其结论并向国会提出关于继续、废除或修改《补充赔偿法案》条款的必要性的建议。能源部向国会提出的建议是:(1) 应继续实施《补充赔偿法案》 (2) 能源部赔偿应继续实施并扩大其广泛和强制性的覆盖范围 (3) 《补充赔偿法案》应以符合《核损害补充赔偿公约》的方式继续生效。能源部坚信并得出结论,继续实施《补充赔偿法案》和能源部赔偿,不作重大修改,正如其 1998 年向国会提交的报告所总结的那样,“符合能源部、其承包商、分包商和供应商以及公众的最佳利益。”无论是现在还是将来,能源部赔偿都是能源部实现其法定使命能力的一个长期且关键的组成部分。能源部赔偿的可用性支持了能源部或代表能源部执行的合同活动中的核安全实践和成果;通过 PAA 的专门系统为受害方提供法律和财务保护来保护公众;对联邦政府来说具有成本效益;并且没有同等且充分的替代方案。
日本经济受到新冠疫情长期影响,但目前呈现复苏趋势,预计2022财年实际GDP增长率为3.2%。但环境问题日益成为日本经济和能源领域的一大担忧。2020年10月,前首相设定了到2050年实现日本碳中和的目标,去年他又宣布了到2030年将排放量在2013年的基础上减少46%的新目标,高于之前的26%。气候变化管理已成为不仅非常重要而且不确定的议题。原因很复杂,据说是日本独有的。基于碳中和的目标,内阁于2021年10月22日制定了第六个战略能源计划。该计划提倡开发和利用可再生能源、氢、氨、CCUS。然而,弥合理想与现实之间的差距将是一个巨大的挑战。首先,由于日本的陆地和海域几乎不适合安装太阳能电池板和风力涡轮机,开发可再生能源对日本来说是一个困难的处境。其次,由于福岛核事故的影响很大,更不用说新建和扩建核电站,甚至重启其他反应堆的运行都很困难。因此,日本必须克服这些挑战,继续前进。创新很重要,但首先要做的是让整个国家都详细了解碳中和的挑战是什么。日本减少二氧化碳的边际成本比世界各国大得多。原因是低成本的可再生能源容量很小,CCS的潜力也很小。大宗商品价格可能会继续上涨。另一方面,许多民众天真地认为,如果我们继续这样下去,零碳未来将在2050年到来。鉴于日本的历史和地处火山和地震多发区,再加上酷热和大雪,日本长期以来一直在适应环境变化,而不是控制环境。《巴黎协定》的“缓解”和“适应”条款很明确,日本应该充分利用该协定。人们认为,应该充分利用直接空气捕获(DAC),即从大气中回收二氧化碳,以及海外封存能力,而不是国内封存能力。出生率下降和人口老龄化问题一直很严重,并将影响日本未来的人口结构。除了提高技术能力以在充满挑战的时代生存之外,日本别无选择,就像日本通过技术创新克服了过去两次石油危机一样。在 COP26 上,《巴黎协定》规则手册得以实现。这被认为是日本的顺风。预计通过领先其他国家实现数字化,能源系统的成本将大大降低。当然,这些技术对全球都有用。
600 个源。值得注意的是,实验室利用新的 380-B 型 B 容器完成了首次源回收,采用了纠正行动计划中修订的要求。Triad 在与国际合作伙伴的核安全能力建设中提供了出色的支持,为双边活动的材料控制和核算 (NMAC) 提供了主题专家 (SME) 支持。Triad 在支持太空核爆炸探测任务方面表现出色。实验室在将操作实验有效载荷安装到国防部卫星的后期组装、集成和测试过程中提供了技术输入和简报。这导致了一项努力来发布关键的空间环境数据,并继续制造下一代有效载荷,以支持 6 月发射和在 USSF GPS 卫星上对 GBD 有效载荷进行早期在轨测试。此外,实验室在 NNSS 执行了 AJAX 实验活动,在 Sigma Complex 执行了监测活动,以支持 DNN 研发工作,以评估检测和表征材料处理和生产操作的能力。 Triad 通过一系列现场测试和高保真模拟证明低当量核监测 PE1 高爆炸源的设计将满足所有科学目标,成功完成了对低当量核监测 PE1 高爆炸源的最终审查。Triad 在国家和国际保障参与层面提供了高质量的创新保障政策研究。Triad 还通过对核、化学/生物和导弹领域的拦截案例进行高质量的技术审查提供了出色的支持。Triad 为各种计划提供了关键支持,包括评估燃耗、裸临界质量、剂量以及评估食品和水污染的方法。Triad 为美国高性能研究反应堆 (USHPRR) 项目提供技术支持,以开发用于制造高密度铀钼整体式低浓缩铀 (LEU) 燃料的商业规模制造工艺。此外,Triad 还为移动包装计划提供了出色的技术专业知识,帮助其准备和执行多项演习。实验室积极支持 NNSA 的技术执行合作伙伴,开发加速器和中子俘获新技术,有效推进了钼-99 工作。Triad 继续为坑道拆卸和替代方案处理分析 (AoA) 规划提供技术支持,并为实现关键决策 (CD)-1 的计划制定假设。提供了重要的技术分析,以支持具有挑战性的交换进料材料的氧化物生产,为过渡到使用 SAVY 容器进行包装做准备。这将扩大 NDA 表在产品 MC&A 测量中的使用范围。Triad 继续进行开创性的实验工作,以及响应迅速的增值技术分析,为反恐和反扩散政策提供信息,并将新元素和工具整合到更大的核事故响应任务中。Triad 利用 pRad 诊断进行了一系列实验,并支持了 NNSS 的计划综合实验。Triad 支持跨机构合作伙伴的威胁科学培训和评估,并在培训课程开发过程中提供主题专业知识。这包括为来自核搜索计划和后果管理计划的 RAP 团队人员提供虚拟光谱警报裁决课程 (SAAC)。此外,这包括培训
职责与责任:执行 C2 行动以支持国土安全、国防和空军行动。为全球核力量和常规力量提供 C2,支持应急计划、作战命令和作战计划。协助 C2 以支持设施应急管理 (EM) 计划。协调行动以确保在 EM 行动期间迅速响应,包括立即调动资源和机构与组织的参与。通过语音和记录复制系统接收、处理和传播紧急行动消息。编码、解码、传输和传递总统决定以执行和终止核力量和常规力量行动。传递 C2 指令以转移、召回、撤离、恢复和重组力量。协调和执行搜索和救援活动。在 C2 操作的规划、执行和评估阶段与其他机构和组织进行协调。发起、接收警报消息并采取行动。飞行跟踪和管理航空航天资源并监控任务状态,包括飞机、机组人员支持、运输、维护支持、机队服务以及乘客和货物支持。监控飞机运动并向机组人员传递信息。与安装和外部机构协调任务延迟。监控发射和太空资产的状态。监控关键人员(如大队指挥官及以上人员)的状态和位置,以便在必要时立即与上级总部沟通。确保正确使用和控制资源和机密材料。制定和评估 C2 操作流程。进行自我评估。确保作战准备就绪并遵守标准。建议采取行动纠正 C2 操作程序缺陷。维护和传播当地和全球当前和预报天气,包括对设施民众和航空航天资源的监视、咨询和警告。确保理解并正确应用执行和控制指定部队的现有指令。准备并提交作战、国防准备、国际条约和航空航天资产报告。分析和传播来自作战和国防准备报告的信息。确保报告的数据是最新和准确的。操作和监控语音、数据和警报系统。建立作战和防御准备报告程序,包括制定程序、维护数据库、培训人员和进行员工援助访问。制定指导 CP 和横向机构 C2 活动的操作说明。制定、维护和启动快速反应清单,以支持疑似或实际破坏、核事故、自然灾害、飞机事故或事件、疏散、疏散和航空航天异常等情况。在日常行动、自然灾害、战时和应急行动期间,接收并向指挥官和内部和外部机构传播时间关键信息,以影响对指定部队和武器系统的积极控制。协调行动,确保在灾难行动(前、中、后)期间迅速做出反应,包括立即启动和召回所有资源和参与机构和组织。监控在自然灾害(过境和过后)、事故、战时袭击和战争以外的军事行动后保护生命、尽量减少损害和恢复行动的行动。协调、指挥和监控行动,以允许继续或恢复重要功能和操作。维护操作状态显示。保持对 C2 系统和飞机飞行跟踪和任务管理系统的熟练掌握,例如(但不限于)单位级/指挥和控制 (UL/UC2) 系统和全球决策支持系统 (GDSS)。建立人力、通信、设备和设施要求。维护通信安全 (COMSEC),包括接收、保护、使用、盘点、发放和销毁 COMSEC 材料。维护 C2 操作人员、信息、操作、计算机、排放、工业和物理安全计划。执行管理操作。编制并维护进入权限列表。协调并为安装支持计划提供输入。维护指令和每日事件日志。专业资格 再培训申请人必须接受人员可靠性计划 (PRP) 资格审查,如 HQ AETC PRP 预筛选指南中所述。注意:AETC/A3N 只会针对 PRP 提出建议,而不会针对 AFSC 分类提出建议。