HII 的大部分业务都与美国政府开展,主要是国防部 (DoD)。作为总承包商、主要分包商、团队成员或合作伙伴,该公司参与了许多高优先级的美国国防计划。通过其 Ingalls 部门,HII 是美国海军两栖攻击舰和远征战舰的建造商、美国海岸警卫队国家安全巡逻舰的唯一建造商,也是建造海军现有阿利伯克级 (DDG 51) 驱逐舰舰队的仅有的两家公司之一。通过其 Newport News 部门,HII 是美国核动力航空母舰的唯一设计者、建造者和加油者,也是目前为美国海军设计和建造核动力潜艇的仅有的两家公司之一。任务技术部门提供广泛的服务和产品,包括 C5ISR 系统和操作;人工智能和机器学习在战场决策中的应用;防御和进攻性网络空间战略和电子战;无人自主系统;实时、虚拟和建设性解决方案;平台现代化;以及关键核行动。
强大的海军对美国的安全至关重要,美国是一个利益遍布全球的国家,其绝大部分贸易都是通过跨洋运输进行的。海军战舰每天每小时都部署在世界各地,以提供可靠的“前沿存在”,随时准备在美国利益受到威胁的任何地方作出反应。核推进系统在其中发挥着至关重要的作用,它提供了机动性、灵活性和耐力,而这正是当今规模较小的海军完成越来越多的任务所必需的。海军 40% 以上的主要战斗人员都是核动力的:10 艘航空母舰、54 艘攻击型潜艇和 18 艘战略潜艇(美国最具生存力的威慑力量)——其中 4 艘已从战略服务中撤出,并改装成隐蔽、大容量、精确打击平台,即 SSGN。海军核推进计划(也称为海军反应堆)的任务是提供军事上有效的核推进装置,并确保其安全、可靠和长寿命运行。这项任务需要训练有素的美国海军男女官兵与在耐力、隐身性、速度和独立于物流供应链方面表现出色的舰船相结合。海军反应堆组织法规,50 U.S.C.§§ 2406、2511,编纂总统行政命令 12344,规定海军反应堆对海军核推进的所有方面负有全部责任,包括海军核推进装置的研究、设计、建造、测试、运行、维护和最终处置。该计划的职责包括所有相关设施、放射控制、环境安全和健康问题,以及人员的选拔、培训和分配。所有这些工作都是由一个精简的网络完成的,该网络由专门的研究实验室、具有核能力的造船厂、设备承包商和供应商以及培训设施组成,由一个小型总部工作人员集中控制。海军反应堆主任是海军上将约翰·M·理查森,他还担任国家核安全局副局长。海军反应堆保持着超过 1.51 亿英里的核动力安全行驶里程的出色记录。该计划目前运行着 97 座反应堆,累计运行时间超过 6,500 反应堆年。作为环境保护领域的领导者,该计划自 20 世纪 60 年代以来每年都发布环境报告,表明该计划并未对人类健康或环境质量产生不利影响。由于该计划的可靠性,美国核动力军舰受到 50 多个国家和属地 150 多个停靠港的欢迎。自从 1955 年 USS NAUTILUS (SSN 571) 首次发出“核动力航行”信号以来,50 多年前,我们的核动力舰艇已经证明了其在保卫国家方面的优势——从冷战到今天的非常规威胁,再到确保美国海上力量在未来占据主导地位的进步。
上图显示了 B-52G 的不同拟议测试配置。一台 XNJ140E-1 核动力装置,配备八台 J57 化学动力发动机(上图左);后机身两侧各一台 XNJ140E-1 和一台 X211 化学动力 XNJ140E-1 变体,配备八台 J57 发动机(上图中间);两台 XNJ140E-1 核发动机,配备四台 J57 化学发动机。插图由作者提供。
和前代潜艇一样,梭鱼级核攻击潜艇也配备有核推进装置,这使它们的航程和机动性都十分出色。它们比上一代核动力潜艇速度更快、更耐用、用途更广泛,具备部署特种部队和使用海军巡航导弹打击数百公里外的陆地目标的新功能。它们代表着技术的飞跃,使法国能够继续留在实施现代、高效国民账户体系的少数国家俱乐部中。
与其前代产品一样,梭子鱼计划的 SNA 配备了核推进装置,使其具有非凡的航程和自由度。它们比上一代核动力潜艇速度更快、更耐用、用途更广泛,具备部署特种部队和使用海军巡航导弹打击数百公里外的陆地目标的新功能。它们代表着技术的飞跃,使法国能够继续留在实施现代、高效国民账户体系的少数国家俱乐部中。
担任 CAPTAIN 之前的宝贵成就 • 担任指挥官(OP,然后是 OP-T,然后是 SM)表现优异 • OP-T CO 领导海上战术空中控制单位和训练中队的重要任务,受到高度重视。许多 OP-T CO 需要担任 CAPT,随后担任我们核动力航空母舰上的领导者,填补关键的 NAE O-6 职位 • SM CO 为作战任务提供至关重要的领导能力 • 在后指挥、航空特定社区(海上任务)和/或联合任务中具有公认的领导能力 • 在担任 CAPTAIN 之前,后指挥的研究生教育受到高度重视
尼米兹级航空母舰 (CVN) 是目前美国海军服役的十艘核动力航空母舰。这些舰艇的总体布局与之前的 Kitty Hawk 级类似,拥有 4.5 英亩的大型飞行甲板,右舷的岛式结构高达近 20 层楼。用于着陆的斜甲板向左倾斜约 14°,长近 800 英尺。四台高速飞机升降机,每台面积超过 4,000 平方英尺,可将飞机从下方的机库运送到飞行甲板。
2. 电力系统:放射性同位素电力推进 (REP):利用钚-238 等同位素自然放射性衰变产生的热量来发电。REP 系统紧凑可靠,是小型到中型任务的理想选择,尤其是在可以接受长时间运行和低功率要求的情况下。它们通常提供 1 千瓦范围内的功率,足以为科学仪器和低推力推进系统(如离子发动机)供电。旅行者号、好奇号和毅力号等著名任务已成功展示了该技术和任务可靠性。裂变电力推进 (FEP):它们依靠核反应堆通过受控核裂变反应发电。与 REP 不同,FEP 系统可以产生更高的功率,通常在 8-10 千瓦之间,是前往谷神星、木卫一、土卫六和木卫二等潜在目的地的先驱无人任务的理想选择。与传统卫星相比,FEP 系统具有可扩展性和灵活性,可承载更大的有效载荷并缩短运输时间。研究表明,人们正在积极研究它们,以用于未来的载人火星任务和外行星探索,而长期高功率需求至关重要。将这项技术集成到先进的航天器中可以帮助航天器运行更长时间。3. 航天器裂变动力的主要优势:[1] 更高的功率输出:与传统的太阳能或化学动力系统相比,裂变动力系统可提供更高的功率水平,使高能科学仪器、先进的推进系统和栖息地支持系统能够运行,用于多行星和深空载人任务。[2] 高功率任务的成本效益:对于需要功率输出超过 1 kWe 的任务,裂变系统比放射性同位素动力系统更具成本效益。这使它们成为具有大量能源需求的长期任务的理想选择。[3] 高功率需求的低质量:当功率要求超过
1958年重新掌权后,戴高乐将军制定了独立威慑计划。 1960年法国进行第一次核试验后,我们的打击力量围绕三个部分发展:空中、陆地*和海上。后者由腔棘鱼计划实现。 “红顶”号是第一艘核动力弹道导弹潜艇(SNLE),它以第一代 SNLE 级潜艇的名字命名,于 1971 年投入现役。“红顶”号及其五艘姊妹舰配备 16 枚带核弹头的海对地弹道导弹,确保战略海洋部队在海上永久存在 30 多年。
早在 1946 年,道格拉斯飞机公司的 R. Serber 就发表了一些关于裂变能应用于火箭推进的基本考虑。Serher 得出结论,最合理的方法是使用传统的堆加热和低分子量推进剂,并指出化学火箭的改进将“完全取决于如何很好地解决传热和高温(材料问题)的困难。”1 他是多么正确!还有许多其他研究涉及使用核能推进火箭、冲压发动机和其他飞机,包括著名的核动力推进飞机 (NRPA) 活动。-' 化学动力 Atlas 导弹的比较