该提案的摘要:我们的项目旨在为研究原子核,核反应和强烈相互作用的物质建立一个全面的综合框架。基于其高级多体和计算方法的互补专业知识,各种单元的协同努力将致力于研究在能量和大小的不同规模上发生的复杂核现象。现代化的从头算技术将被完善和应用,利用微观相互作用,这些相互作用源自核有效场理论。密度函数将使用AB的初始和/或现象结构约束开发,并应用于整个核图表中有限核的大量,光谱和衰减特性的计算,将研究集体模式,利用包括许多人体技术,包括超出平均场相关性。结构和反应理论的一致合并将为直接将理论计算与极端条件下的核系统的经验数据进行比较,还可以推导微观光学潜力。这些研究还将通过开发数学方法,基于量子计算的算法和机器学习技术来进行,专门针对研究核多体问题而进行。将特别注意与稀有同位素,深色可能检测以及电子相互作用的物理学有关的当前实验项目,包括中微子物理学和双β衰减。组合的天体物理和地面约束以及基于最先进模型的预测将采用对国家核方程的改进,多方面的理解。
在核反应实验中,测量的衰变能谱可以洞悉衰变系统的壳结构。然而,由于探测器分辨率和接受效应,从测量中提取底层物理信息具有挑战性。Richardson-Lucy (RL) 算法是一种常用于光学的去模糊方法,已被证明是一种成功的图像恢复技术,该算法被应用于我们的实验核物理数据。该方法的唯一输入是观察到的能谱和探测器的响应矩阵(也称为传输矩阵)。我们证明该技术可以帮助从测量的衰变能谱中获取有关粒子非结合系统壳结构的信息,而这些信息无法通过卡方拟合等传统方法立即获取。出于类似的目的,我们开发了一个机器学习模型,该模型使用深度神经网络 (DNN) 分类器从测量的衰变能谱中识别共振状态。我们在模拟数据和实验测量中测试了这两种方法的性能。然后,我们将这两种算法应用于通过不变质谱测量的 26 O → 24 O + n + n 衰变能谱。使用 RL 算法对测量的衰变能谱进行去模糊处理后恢复的共振状态与 DNN 分类器发现的状态一致。去模糊处理和 DNN 方法均表明 26 O 的原始衰变能谱在约 0.15 MeV、1.50 MeV 和 5.00 MeV 处出现三个峰,半宽分别为 0.29 MeV、0.80 MeV 和 1.85 MeV。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,表征了从 180 Ta 到 175 Ta 的同位素记录产量的轫致辐射谱。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并且聚焦激光能量转化为高能轫致辐射的转换效率达到创纪录的 2%。
伽玛射线与物质互动©M。Ragheb 6/13/2024 1。引言与物质相互作用的伽玛相互作用从屏蔽它们对生物物质的影响的角度很重要。它们被认为是电离辐射,其电子和核的散射导致产生含有负电子和正离子的辐射场。与物质相互作用的相互作用的主要模式是其光电和光核形式,康普顿散射和电子正电子对产生的照片效果。在较小的程度上,还会出现光合作用,瑞利散射和汤姆森散射。这些过程中的每一个都以不同的形式出现。可能会根据伽马光子的量子力学特性而发生不同类型的散射。电子正电子对可以在核和电子的场中形成。光电效应可以消除原子电子,而光核反应会从细胞核中淘汰基本颗粒。伽马射线在放射性同位素的衰减过程中发出。在宇宙尺度上,伽玛射线爆发(GRB)或磁铁产生可能影响太空旅行和探索的强烈伽马辐射场。此外,由于雷暴的结果,大气中的地面伽马射线闪光爆发(TGF)的爆发相对较高,并且并非来自地面上看到的伽马射线的相同来源。每月观察到大约15至20个这样的事件。伽玛射线气泡。2。伽马光子能量零休息质量(例如伽马光子)的粒子将具有:
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,对 180 Ta 至 175 Ta 同位素记录产量的轫致辐射谱进行了表征。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并将聚焦激光能量转换为高能轫致辐射,转换效率达到创纪录的 2%。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。
辐射癌症治疗是一种广泛使用的替代或补充剂,可用于外科手术的局部实体瘤,并且通常与化学疗法结合使用[1]。通常,使用高能量光子(X射线或γ砂)或加速颗粒(质子,中子或碳离子)辐照肿瘤。正常组织中梁的副作用是常见的,鼓励搜索将最大化肿瘤细胞灵敏度并允许使用较低辐射剂量的方案。在发现新的亚原子粒子,中子和核反应涉及其[2]之后不久,就提出了一种这样的方法[2]。中子是由稳定的硼同位素(10 B的核的核)非常有效地捕获的,然后由α粒子发射衰减。如果有一种在肿瘤细胞中浓缩10b的方法,则它们将被选择性地暴露于辐射,而周围的组织将被保留,因为与中子不同,α颗粒可以将组织穿透到非常浅的深度。此外,由于10 B反应的较大横截面,传入中子的能量可能很低(表现中子),从而减少了一级辐射的损害。因此,硼中子捕获(BNC)疗法(BNCT)的概念诞生了。虽然在概念上很简单,但两个技术障碍严重限制了BNCT的实际应用,即缺乏良好的硼载体,这些硼载体将10 B输送到细胞中,并且缺乏紧凑且安全的中子源。从历史上看,BNCT吸引了对侵袭性弥漫性脑肿瘤(例如多形胶质母细胞瘤)的疗法的显着兴趣[6,7](表1)。在过去的20年中,这两个领域都取得了重大进展,而BNCT现在正在美国,日本,中国,俄罗斯和其他具有运营反应堆或最近的加速器中子来源的临床用途[3-5]。但是,现在已经解决了许多临床研究,尽管规模较小,但该应用程序
尽管在理解极端环境下的物质方面不断取得令人瞩目的进展,但利用现有的分析和计算技术,在实验和观察之外进行定量扩展仍然具有挑战性。众所周知,经典计算在提供量子系统动力学或密集量子系统性质的稳健结果方面存在局限性,例如参考文献 [1]。Feynman [2] 等人的开创性工作已经预见到了这些局限性,他们将量子计算确定为一条前进的道路。量子计算机现已成为现实,虽然发展迅速,多样性和能力不断增强,但目前仅限于中等大小的噪声量子比特和量子数系统,量子相干时间相对较短,即我们处于噪声中型量子 (NISQ) 时代 [3]。量子计算提供的额外能力是对纠缠和叠加的控制,我们正在学习如何将其集成到我们的计算工具箱和分析技术中。量子计算对于特定的计算机科学问题具有优势,例如参考文献 [4]。 [4],研究人员现在正积极寻求量子优势在科学应用方面的应用。由于我们在标准模型物理中面临的挑战本质上是量子力学的,人们乐观地认为,它们可能为科学应用提供量子优势的早期证明。使用理想的量子计算机可以有效地进行实时时间演化 [5]。因此,如果能以足够的精度准备相关的初始状态,未来的量子计算机有望模拟复杂过程的时间演化,如强子化和碎裂、低能核反应、热化、相干中微子味演化和早期宇宙中的物质产生,例如参考文献 [6–8]。尽管初始状态准备在规模上通常效率不高,即使使用量子计算机,但大自然在这方面对我们通常很仁慈,出现了对称性、间隙和层次结构,因此经典和量子模拟的结合是可行的
在预测恒星的演化和死亡方面,恒星进化模型的最新进展。我们提出了使用更新的P ARSEC v2.0代码计算的新的恒星进化模型,以获得金属和初始质量的全面和均匀的网格。核反应网络,质量损失处方和元素混合的处理都在P ARSEC v2.0中进行了更新。我们计算了跨越Z = 10-11至Z = 0的13个初始金属性的模型。03,质量范围从2.0m⊙到2000 m,由1100多个库(包括纯模型在内的2100个轨道)组成。对于每条轨道,从预先序列到最先进的早期抗肌肉分支或苏植物前阶段(取决于恒星质量)的进化。在这里,我们描述了轨道的特性及其化学和结构进化。我们计算了最终的命运和残余物质,并为每种金属性建立了质谱,发现合并的黑洞(BH)配对质量质量间隙仅在100至130 m⊙之间。此外,残留质量提供了与观察到的BH质量一致的模型,例如GW190521,Cygnus X-1和Gaia BH3二进制系统的BH质量。我们计算并提供了从恒星风和爆炸性最终命运以及电离光子速率的化学喷射。我们展示了金属性如何影响这些恒星的进化,命运,喷射和电离光子计数。所有模型均可公开可用,可以在P ARSEC数据库中检索。我们的结果表明,与不同代码计算的其他轨道的总体一致性很强,由于混合和质量损失的不同处理,对于非常巨大的恒星(M Zams> 120m⊙)而出现了最显着的差异。与大型麦哲伦云的狼蛛星云中观察到的大量恒星样本的比较表明,我们的轨道很好地重现了主要序列上的大多数恒星。
核能作为零排放清洁能源溶液,以其能够产生大量无碳功率的能力而闻名,同时与其他环保能源相比,利用最小的土地空间。核电系统的有效和经济运行非常明显地取决于所采用的燃料和结构材料的性能。在运营寿命上,通常跨越数十年的时间,这些材料忍受了极端条件,包括高温,强烈的辐射暴露,腐蚀性环境以及在核反应期间释放的填充产物造成的损害。核燃料的性质会经历实质性的变化,例如燃料组成,辐射诱导的相变,与各种透射产物的相互作用,燃料和覆层材料之间的化学反应以及机械行为之间的相互作用。同样,结构材料面临着由复杂的辐射条件引起的可比挑战,包括暴露于腐蚀性环境中,这些腐蚀性环境超出了传统的水基系统,以包括熔融盐环境。核材料领域内的主要挑战包括与微结构和微化学改变有关的问题,以及受照射和腐蚀引起的物理性质的变化。理解和缓解这些挑战的努力对于正在进行的研究努力至关重要。高级表征技术,再加上建模方法,在阐明辐射对中尺度长度的材料的影响中起关键作用。这些挑战与各种因素相关,包括缺陷的产生和演变,固体,挥发性和气态性产物的活动性和降水,结构与性质之间的相关性,机械性能的降解以及结构完整性的降解以及结构完整性,以及受到放射相变的相关性。利用实验室离子束加速器,研究和测试反应堆以及商业核电反应堆等工具,旨在揭示辐射下材料的响应。从原子到连续体的多个量表的计算研究对于理解和预测材料进化是必不可少的。然而,核材料研究构成了重大障碍,包括长时间的交货时间和数十年来产生的大量成本。为加快创新并促进新型材料的发展,对高通量研究的势在必行。