摘要越来越多地赞赏,核的结构成分通过改变染色质组织来调节基因可及性。虽然核膜连接器蛋白将机械敏感性肌动蛋白细胞骨架与核骨架联系起来,但肌动蛋白对核内部结构的贡献仍然神秘。控制肌动蛋白转运到细胞核中,加上控制肌动蛋白结构(肌动蛋白工具盒)的蛋白质的存在,这表明核肌动蛋白可以支持基因表达的生物力学调节。细胞肌动蛋白结构是机械响应性的:通过在质膜传播力在细胞核中传播的力产生的肌动蛋白电缆。我们认为,对这种生物力学提示的响应动态肌动蛋白重塑为表观遗传景观提供了新的结构控制水平。我们在这里提出要对机械力可以促进肌动蛋白转移到细胞核和控制结构排列的事实中,如间充质干细胞中所示,从而调节谱系承诺。
2020 年 1 月 13 日至 17 日,在维也纳国际原子能机构总部,日本原子能机构、洛斯阿拉莫斯国家实验室和国际原子能机构核数据部门共同召开了一次特别会议,重点讨论了 Hauser-Feshbach 理论在裂变产物产量 (FPY) 评估和裂变建模中的应用。这次会议是为各研究所计划建立新的 FPY 数据库所做的准备工作。我们讨论了 Hauser-Feshbach 统计衰变模型的实施情况,以计算裂变碎片的去激发,并对各研究所可用的三个代码进行了相互比较——CCONE(日本原子能机构)、CoH/BeoH(洛斯阿拉莫斯国家实验室)和 TALYS(国际原子能机构)。讨论包括我们可以通过模型生成的裂变可观测量类型、初始碎片配置的估计(裂变后和瞬时粒子发射前),以及这些代码的未来开发,以使其适用于 FPY 数据评估。
卫星现在通常用于测量水和陆地表面的反射,因此与环境相关的参数,例如水生叶绿素浓度和陆地植被指数。对于每个卫星任务,对于所有光谱带的大气底部都需要放射线验证,并涵盖将使用卫星数据的所有典型条件。现有的网络,例如水和陆地的Radcalnet等现有网络提供了至关重要的验证信息,但是(Aeronet-OC)不涵盖所有光谱带或(Radcalnet)不涵盖所有表面类型和查看角度。在这篇文章中,我们讨论了光辐射测定法中仪器,测量方法和不确定性估计的最新进展,并提出了以下观点,即需要一个新的自动化高光谱辐射仪网络来进行多损新的水和陆地表面反射率的多效率辐射验证。描述了联合网络概念的超网络,为网络特定方面的研究论文提供了背景。该网络在其对土地和水面的共同方法方面都是独一无二的。解释了土地和水测量之间的共同方面和差异。基于对面向验证的研讨会的HyperNET数据的早期热情,我们认为,这种新的自动高光谱辐射仪网络将有助于对水和多角度的多端辐射验证和多角度土地表面反射的反射。HyperNet网络与其他测量网络具有很强的协同作用(Aeronet,
Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,Ikkoh Yasuda,Naomi Ruth D. Saludar,Ana Ria Sayo,Shuichi Suzuki,Akira Yokoyama,Yuriko Ozeki,
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
经理负责采购商品、服务和执行工程所需的所有业务活动,也可以通过直接分配,与艺术所预见和规定的内容保持一致。36,第 2 段,信件。a) 立法法令n. 2016 年 4 月 18 日第 50 号立法法令(经第 56/2017 号立法法令修订)并符合该条例为上述商业活动制定的标准;鉴于学院理事会以第 199 号决议通过的学院业务活动规章制度, 2019年 3月 7日 9;了解该学院的三年教育优惠计划 (P.T.O.F.);考虑到需要确保定期进行预定的行政/教学活动;已查看 E.F. 年度计划2021 年经研究所理事会第 2021 号决议批准。 2021年2月15日第35号;已经看到了决心的保护。n. 2018 年 12 月 28 日第 8165 号法令,用于分配 n 的租赁和维护服务。 6 台 A3 多功能复印机和
本文研究了光纤的设计和优化,以实现高速数据传输,强调了最大程度地提高现代通信网络效率的进步。光纤(全球通信基础架构的核心组成部分)能够在长距离内传输数据,而通过总内部反射等原则,损失最小。本研究探索了单模和多模式光纤设计,提供了关键参数的概述,例如核心直径,折射率索引程序和数值孔径。使用麦克斯韦方程的数学建模在优化纤维性能方面起着核心作用,帮助工程师缓解诸如衰减和分散等挑战。本文还讨论了高级技术,包括密度波长多重多路复用(DWDM),该技术可实现每秒数据速率。实践应用中的案例研究,例如纤维到家(ftth)网络和跨加工电缆,突出了优化设计对网络绩效的影响。展望未来,预计光子晶体纤维和空心纤维的创新将推动进一步的改进,从而实现超高速度数据传输。本文结束了持续研发的意义,以应对光纤技术的挑战并支持全球通信系统的需求不断增长。