在临床细胞遗传学中,实验室专业人员分析染色体的数值和结构畸变,以诊断遗传疾病或癌症。MetaSystems 在医学和生命科学领域拥有超过 35 年的载玻片扫描自动化经验,为创建核型图和荧光原位杂交 (FISH) 提供了全面的解决方案,适合时间紧迫且精确的程序。深度学习的创新帮助 Ikaros 用户在高效创建核型图方面取得了重大进展。
在上次修订后的摘要(Efetov&Tarmann 2024b)之后,该亚家族由五个部落组成:Thyrassiini,Pollanisini,Artonini,Cleleini和Procridini。迄今为止,核型仅以Pollanisini和Procridini而闻名。本文介绍了有关单倍体染色体数(n = 31)的信息,该信息首次确定了Artonini Tribe Artonini的代表。Artona Martini Efetov,1997年。先前有关“ Artonini”的信息(Efetov等人2015)指2004年的Pollanisus commoni tarmann,现在是Pollanisini部落的一种。关键词单倍体染色体数; Zygaenidae,Procridinae; Artonini; Artona Martini。引言在鳞翅目中有一些小组,即使在密切相关的物种中,染色体数也有极大的染色体数。在蝴蝶中,我们知道诸如1822年的AgrodiaetusHübner(Lycaenidae)和Erebia Dalman,1816年(Nymphalidae)等群体就是这种情况。以前,我们已经发现Zygaenidae,尤其是在procridinae的家族中也存在极大的染色体数量(Efetov 1998b,2001b,c,2004; Efetov&Tarmann 1999a; Efetov 199a; Efetov等人;2003,2004,2015,2025; Efetov&Parshkova 2003,2004,2005)。在上次修订了Procridinae(Efetov&Tarmann 2024b)之后,该亚家族由五个部落组成:Thyrassiini Efetov&Tarmann,2024年; Pollanisini Efetov&Tarmann,2024年; Artonini Tarmann,1994年; Cleleini Efetov&Tarmann,2024年;和Procridini Boisduval,1828年。2019; Efetov 1996a,b,1997a,b,1998a,1999,2001a,b,2006,2010; Efetov等。对Zygaenidae的核型以及遗传学,形态和生物学的进一步研究对于理解该家族中物种的进化关系以及物种的系统位置可能非常重要(Can等人2006,2011,2014,2018,2019a – c,2022,2023,2024a,b; efetov
核型是指基因组构成一组染色体的结构。物种间的核型差异预计会阻碍各种生物过程,如染色体分离和减数分裂染色体配对,从而可能导致不相容性。核型可以在近缘物种之间甚至同一物种的不同种群之间迅速变化。然而,人们对驱动核型进化的力量了解甚少。在这里,我们描述了从塞舌尔群岛分离出来的果蝇品系的独特核型。该品系丢失了 X 染色体上的核糖体 DNA (rDNA) 位点。由于 Y 染色体是唯一其他携带 rDNA 的染色体,所以所有雌性都携带至少一条 Y 染色体作为 rDNA 的来源。有趣的是,我们发现该品系还携带一条截短的 Y 染色体 (YS ),尽管它无法支持男性生育能力,但它在种群中稳定维持。我们的建模和细胞学分析表明,Y 染色体对雌性适应度的负面影响大于 YS 染色体。此外,我们生成了一个独立的菌株,该菌株缺乏 X rDNA,其核型为 XXY 雌性和 XY 雄性。该菌株迅速进化出多种核型:两个新的截短 Y 染色体(类似于 YS ),以及两个独立的 X 染色体融合,其中包含 Y 衍生的 rDNA 片段,从而消除了雌性对 Y 染色体的依赖。考虑到罗伯逊融合经常发生在人类的 rDNA 基因座上,我们提出 rDNA 基因座不稳定性可能是核型进化的驱动力之一。
染色体工程已在酵母中成功尝试,但在包括哺乳动物在内的高等真核生物中仍然具有挑战性。在这里,我们报告了小鼠中的程序性染色体连接,这导致在实验室中产生了新的核型。使用单倍体胚胎干细胞和基因编辑,我们融合了两条最大的小鼠染色体,即染色体 1 和 2,以及两条中等大小的染色体,即染色体 4 和 5。染色质构象和干细胞分化受到的影响最小。然而,携带融合染色体 1 和 2 的核型导致有丝分裂停滞、多倍体化和胚胎致死,而由染色体 4 和 5 组成的较小融合染色体能够传递给纯合后代。我们的结果表明在哺乳动物中进行染色体水平工程的可行性。
1 哥本哈根大学全球研究所进化全息基因组学中心,丹麦哥本哈根,2 圣地亚哥动物园野生动物联盟贝克曼保护研究中心,美国加利福尼亚州埃斯孔迪多,3 俄罗斯新西伯利亚俄罗斯科学院分子与细胞生物学研究所基因组多样性与进化系,4 俄罗斯新西伯利亚新西伯利亚州立大学自然科学系,5 美国德克萨斯州休斯顿贝勒医学院分子与人类遗传学系基因组结构中心,6 美国德克萨斯州休斯顿莱斯大学理论生物物理中心和计算机科学系,7 美国马萨诸塞州剑桥麻省理工学院和哈佛大学布罗德研究所,8 美国加利福尼亚州圣地亚哥 Bionano Genomics 研究与开发系,9 俄罗斯圣彼得堡 ITMO 大学 SCAMT 研究所应用基因组学实验室,10物种生存中心,史密森尼国家动物园和保护生物学研究所,弗吉尼亚州弗兰特罗亚尔,美国,11 沃尔特·里德生物系统学部,博物馆支持中心 MRC-534,史密森尼学会,马里兰州苏特兰,美国,12 沃尔特·里德陆军研究所,马里兰州银泉,美国,13 马里兰州洛约拉大学,马里兰州巴尔的摩,美国,14 保护基因组学中心,史密森尼国家动物园和保护生物学研究所,华盛顿特区,美国,15 乔治梅森大学史密森尼-梅森保护学院,弗吉尼亚州弗兰特罗亚尔,美国
本文对心脏淀粉样变性(CA)的几个超声心动图发现的诊断值进行了批判性综述。考虑到其具有挑战性的诊断以及临床医生对高度怀疑的高指数的需要,强调了对CA的早期和准确检测的重要性。超声心动图通常是怀疑CA时心脏结构和功能成像评估的首选。本文涵盖了几种常规的超声心动图特征和斑点跟踪超声心动图 - 派生的变形参数。其中一些索引分组在一起以形成分数,这可以提高诊断Ca的准确性。,特别是在较早的阶段,超声心动图具有较低的特异性,可以区分淀粉样蛋白和其他肥厚的表型,强调与临床危险信号,实验室测试和其他心脏成像方式相关的需求。
染色体结构:Kim等人(2020年)报告了Populus tremula var中染色体结构的相似性。Davidiana,Populus alba及其杂种通过鱼核型分析揭示。韩国阿斯彭的核型(P. tremula var.Davidiana),银杨(P. alba)及其两个杂种Suwon Aspen(P. tremula var.glandulosa)和Hyun Aspen(P. alba×P。tremula var。glandulsa)。所有物种的染色体组成与2n = 38。韩国阿斯彭,银杨,Suwon Aspen和Hyun Aspen的核型配方分别为28m + 6SM + 4ST(2SAT),26M + 10SM(2SAT) + 2ST + 2ST,26M + 12SM(2SAT)和28m + 10sm + 10sm(2SAT)。这四个物种有一对45s rDNA位点,一对5S rDNA位点与鱼核型共有。
恢复缺乏减数分裂辅酶的染色体基因座中的减数分裂重组(Schmidt等,2020; R r€Onspies等,2022)。相比之下,多个或“丰富”的重排通常会导致减少减数分裂染色体的分离和非整倍型配子,从而损害了植物的生存能力(Heng,2019年)。许多核型重排可能会导致密切相关的加入之间的生殖屏障,从而导致物种的早期步骤(Lucek等,2023)。这些“丰富”的染色体重排通常由涉及影响一个或多个染色体的几十个断点(甚至数百个)的重排的复杂组合,从而导致结构和/或数值核型变化(Schubert,2024)。在“ Chromoana-Genesis”事件期间出现了多个同时重排,这是由“灾难性”现象引起的,例如DNA复制期间的压力,DNA修复缺陷,暴露于遗传毒性剂(Guo等人,2023年,2023年)或异常的Centromere Centromere行为(目前的审查的重点)。大多数受许多重排影响的生物或细胞可能灭亡。然而,具有可行的新型核型的一小部分可能会持续存在,从而导致基因流势和潜在触发物种(Lucek等,2023)。观察到密切相关的物种在其核型排列中可能会有很大差异,这支持了这一假设。染色体。(2023),在Hoang等人中看到了一些假定的例子。(2022)和Tan等。(2023)。(2024)和Martin等。最近在Lucek等人中回顾了核型变化的核型变化。(2023)在Ferguson等人中看到的植物中有一些最新推定的例子。(2020)。
简单总结:儿童急性髓系白血病 (AML) 的治疗根据多种复发性遗传畸变进行分层,需要检测不同的诊断方法,如核型分析和荧光原位杂交 (FISH)。本研究旨在分析光学基因组图谱 (OGM) 作为一种新的一体化方法,是否可以识别核型分析描述的所有分层相关遗传畸变。因此,我们用 OGM 分析了 24 名儿童 AML、双系白血病和混合表型急性白血病患者在诊断时收集的冷冻骨髓和血细胞。将 OGM 的结果与核型分析和 FISH 的常规诊断结果进行了比较。我们表明 OGM 有很大潜力解决细胞遗传学的局限性,甚至可以识别新的结构畸变,这些畸变可用于监测没有 MRD 标记的患者的微小残留病 (MRD)。
*频率,响应率和结果度量应通过风险类别进行报告,如果有足够的数量可用,则应通过指示的特定遗传病变。†主要基于在经过跨治疗的患者中观察到的结果。根据可测量残留疾病分析的结果,在治疗过程中可能会发生变化。•并发套件和/或FLT3基因突变不会改变风险分类。§AML被归类为不良风险。||仅影响Cebpa基本亮氨酸拉链的框内突变,无论它们是否以单相关还是双重突变的形式出现,都与有利的结果有关。¶(t (9; 11)的存在P21.3; Q23.3)优先于罕见的,并发的不良风险基因突变。#Eccluding KMT2A部分串联复制(PTD)。**复合核型:在没有其他类别定义的重复遗传异常的情况下,$ 3无关的染色体异常;不包括三个或三个或多个三分之一的高二倍体核型(或多个多核),没有结构异常。††单粒核型:存在两个或更多不同的单色((不包括X或Y(Y(Y(Y(Y))),或一个单个常染色体单子弹结合使用,与至少一个结构性染色体异常相结合,不包括核心结合因子AML)。‡‡目前,如果这些标记与有利的风险AML亚型共发生,则不应将这些标记用作不良预后标记。从参考文献6ATP53在变异等位基因部分至少为10%处的ATP53突变,与TP53等位基因状态(单或双重突变无关; TP53突变与AML与复合和单核核型显着相关。