Singh,A.P.,Pandey,A.,Verma,P.K。 (2023)来自坏死性真菌Ascochyta rabiei的核效应ARPEC25靶向鹰嘴豆转录因子CaβLim1a,并负责调节木质素的生物合成,从而提高了宿主的易感性。 植物细胞卷35,第3期,1134-1159 https://doi.org/10.1093/plcell/koac372 2。 Thakur K,Shree A,Verma PK。 (2023)揭开病原体欺骗性伪装:从模块到Singh,A.P.,Pandey,A.,Verma,P.K。(2023)来自坏死性真菌Ascochyta rabiei的核效应ARPEC25靶向鹰嘴豆转录因子CaβLim1a,并负责调节木质素的生物合成,从而提高了宿主的易感性。植物细胞卷35,第3期,1134-1159 https://doi.org/10.1093/plcell/koac372 2。Thakur K,Shree A,Verma PK。 (2023)揭开病原体欺骗性伪装:从模块到Thakur K,Shree A,Verma PK。(2023)揭开病原体欺骗性伪装:从模块到
介绍材料和定义 简介 – 导弹技术控制制度 (MTCR) 附录 I – MTCR 指南 附录 II – 单位、常数、首字母缩略词和缩写(用于 MTCR 附件) 附录 III – 换算表 附录 – MTCR 理解声明 MTCR 附件简介、定义和术语 类别 I 项目 1 – 完整运载系统 项目 2 – 可用于完整运载系统的完整子系统 类别 II 项目 3 – 推进组件和设备 项目 4 – 推进剂、化学品和推进剂生产 项目 5 – 保留 项目 6 – 结构组件生产、热解沉积和致密化以及结构材料 项目 7 – 保留 项目 8 – 保留 项目 9 – 仪器、导航和测向 项目 10 – 飞行控制 项目 11 – 航空电子设备 项目 12 – 发射支持 项目 13 – 计算机 项目 14 – 模拟数字转换器 第 15 项 – 测试设施和设备 第 16 项 – 建模-仿真和设计集成 第 17 项 – 隐身 第 18 项 – 核效应防护 第 19 项 – 其他完整运载系统 第 20 项 – 其他完整子系统
使用具有Strutinsky-Intolal壳和配对校正的四阶延长的托马斯 - 弗米方法和配对校正,我们将中子恒星与BSK31的内在外壳计算出功能的功能,其配对具有两个术语:(i)在同质核问题上对同质核效应的结果(均具有更高的核化效应)(i)对中等效应的术语(i),并且是在核问题上的效果(功能; (ii)一个经验术语取决于密度梯度,这允许对核质量的出色拟合。质子和中子配对都考虑在BCS理论中,而后者则在局部密度近似中。我们发现,在考虑中子配对的整个密度范围内,质子数Z的平衡值保持40。新的状态方程和组成与我们先前首选的功能BSK24非常相似。但是,预测的中子配对场完全不同。特别是发现簇对中子超级流体不可渗透。对中子超级流体动力学的含义进行了讨论。由于新配对更现实,因此功能性BSK31更适合研究中子星形壳中的中子超级流动性。
摘要动物发育由一组非常小的典型信号通路介导,例如 Wnt、Hedgehog、TGF-β、Notch 和 Hippo 通路。尽管曾被认为仅存在于动物中,但最近的基因组测序揭示了这些通路的组成部分也存在于动物最亲近的单细胞亲属中。这些发现引发了人们对这些发育通路的祖先功能及其在动物多细胞性出现中的潜在作用的疑问。在这里,我们通过开发对 Capsaspora owczarzaki 进行基因操作的技术,首次对单细胞生物中的任何这些发育通路进行了功能性表征,Capsaspora owczarzaki 是动物的近亲,表现出聚集性多细胞性。然后,我们使用这些工具来表征 Hippo 信号核效应物 YAP/TAZ/Yorkie (coYki) 的 Capsaspora 直系同源物,coYki 是动物组织大小的关键调节器。与基于动物研究的预期结果相反,我们发现 coYki 对细胞增殖并非必需,但可以调节细胞骨架动力学和多细胞结构的三维 (3D) 形状。我们进一步证明,单个 coYki 突变细胞的细胞骨架异常是 coYki 突变聚集体异常 3D 形状的基础。总之,这些发现表明 Hippo 通路在细胞骨架动力学和多细胞形态发生中发挥了祖先作用,早于动物多细胞性的起源,在进化过程中被用来调节细胞增殖。