实习和博士论文提案(D. Lacroix,IJCLab)标题:用量子计算机描述强纠缠系统中的非平衡动力学摘要强纠缠系统中的非平衡动力学带来了重大的计算挑战,因为传统方法难以处理大量粒子和高纠缠。该博士项目旨在利用量子计算的最新进展来模拟此类系统。在 IJCLab/巴黎萨克雷大学,之前的工作主要集中在相互作用粒子的静态特性上,但这项研究将扩展到时间相关的非平衡现象,这些现象对计算的要求更高。该项目的目标有三个:(1)加深对量子信息理论的理解,特别是在量化纠缠方面,(2)掌握相互作用粒子系统的量子模拟技术,以及(3)应用并可能增强现有的量子算法来模拟非平衡动力学。这些模拟将使用 IBM 的 Qiskit 量子计算平台执行,重点关注可以控制相互作用强度的系统。这项研究有可能在核物理、中微子振荡和凝聚态物质等领域取得重大突破,因为强纠缠粒子和非平衡动力学至关重要。通过扩展量子模拟的能力,该项目既可以促进新量子算法的开发,也可以加深对基础物理学的理解。摘要近年来,在技术进步和功能量子平台的出现的推动下,量子计算取得了长足的进步 [1]。在 IJCLab/巴黎萨克雷大学,核物理团队在过去几年中一直积极研究这一课题,致力于在核物理和中微子物理中开拓应用 [2-4]。此外,人们还探索了量子计算和量子信息的新方法。最近的研究主要集中于对强相互作用系统的静态特性进行建模,从而开发出新的量子算法。展望未来,我们旨在扩展这项工作以解决非平衡问题,因为这带来了更大的计算挑战。在处理由相互作用的粒子组成的物理系统时,传统计算机很难处理大量粒子或高纠缠度。虽然可以使用张量积态方法在传统计算机上有效模拟弱纠缠系统,但这些技术会随着纠缠度的增加而失效。总体而言,量子计算机有望比传统系统更具优势,尤其是在处理强纠缠粒子时。
凝聚态物理(理论与实验)、计算与理论物理、天文学、材料科学、纳米材料与器件、核物理、光谱学、量子计算与量子信息、高能物理环境科学、生物物理学、生物化学、有机合成、高分子化学、超分子化学、生物地球化学;辐射生物学;食品科学与技术;可持续能源生产;水科学与技术;气候变化、化学冶金、药物输送、伤口愈合、再生医学、昼夜节律、神经生物学、纯数学与应用数学(计算流体动力学、天体力学、运筹学、数值方法、弹性动力学、数论、图论、算子论、可和性理论、概率与统计)
1 波兰科学院 Nencki 实验生物学研究所细胞信号传导和代谢紊乱实验室,02-093 华沙,波兰;a.dobosz@nencki.edu.pl (AMD);j.janikiewicz@nencki.edu.pl (JJ);a.dziewulska@nencki.edu.pl (AD) 2 波兰科学院核物理研究所跨学科研究部,31-342 克拉科夫,波兰;anna.maria.borkowska@uj.edu.pl (AMB);Ewelina.Lipiec@ifj.edu.pl (EL); Wojciech.Kwiatek@ifj.edu.pl (WMK) 3 波兰克拉科夫雅盖隆大学物理、天文与应用计算机科学学院,30-348 4 波兰科学院 Nencki 实验生物学研究所分子医学生物化学实验室,02-093 华沙,波兰;p.dobrzyn@nencki.edu.pl * 通讯地址:a.dobrzyn@nencki.edu.pl © 检查 ^ x 更新
摘要:本文旨在探讨电子在物理学领域的广泛应用和深远影响。电子作为自然界的基本粒子,近百年来得到了广泛的研究和应用。本文首先介绍电子的基本特性,然后深入探讨电子在物理学领域的几个关键应用,包括电子微结构研究、量子力学、电子学、核物理和粒子物理。此外,本文分析了电子对现代科学技术的深远影响,重点介绍了其在信息技术、医学、材料科学等领域的应用。最后,本文总结了电子在物理学中的重要作用,并强调了继续研究电子特性和应用的重要性。
本报告记录了过去先进反应堆启动物理测试项目从初始燃料装载到全功率提升的启动物理测试。审查包括对测量了哪些核物理数据、测量这些数据的原因、测量方法以及与当时预测反应堆性能计算的一致性的评估。本次审查的目的是为未来计划在国家反应堆创新中心进行演示的先进反应堆建立测试纳入历史先例。历史审查包括被认为与当前轻水反应堆设计有显著不同的反应堆设计,或使用简化、固有、被动或其他创新手段来实现其安全功能的反应堆设计。
•美国能源部:科学技术 - 负责,是美国高能物理学,核物理和融合能源科学研究计划的主要联邦资助机构•华盛顿词干 - 在华盛顿,我们的教育,商业,政治,政治领导者和社区已将STEM教育列为优先级。•华盛顿技术行业协会•美国联合国西北华盛顿 - 我们在美国建筑师研究所的一章•综合和比较生物学学会•美国数学协会•美国统计协会•美国统计协会•华盛顿数学系的K -12大学宣传和资源,针对K -12为了社会,正义和公共安全的利益,将科学与服务结合起来•汽车设计 - 汽车工程网站
核聚变长期以来一直被认为是一种理想的太空推进方法,因为它具有极高的燃料比能(比最好的化学燃料高 + 2 # 10 6)和排气速度(+ 4% 的光速,而最好的化学燃料为 + 4 公里/秒)。这种高性能将允许在参与研究人员的一生中快速完成行星际任务以及星际任务。1然而,聚变推进存在两个主要困难:点燃自持聚变链式反应的困难以及反应产生的大量电离辐射,这需要相当大的屏蔽质量来抵御这种辐射。1本摘要介绍了一种独特但众所周知的核物理技术“自旋极化”的能力,它可降低点火要求和航天器必须处理的电离辐射通量。
Sec.10101.科学办公室的使命。Sec.10102.基础能源科学计划。Sec.10103.生物和环境研究。Sec.10104.高级科学计算研究计划。Sec.10105.聚变能研究。Sec.10106.高能物理计划。Sec.10107.核物理计划。Sec.10108.科学实验室基础设施计划。Sec.10109.加速器研究与开发。Sec.10110.同位素研究、开发和生产。Sec.10111.加强与教师和科学家的合作。Sec.10112.高强度激光研究计划;氦气保护计划;科学办公室新兴生物威胁防范研究计划;中型仪器和研究设备计划;拨款授权。秒。10113。建立计划以促进竞争性研究。秒。10114。研究安全。