在2021年和2023年,在负责Instagram的内容供稿策划的算法背后的机制上发表了两个独特的官方陈述,其中2023年的出版物被称为“ Instagram排名解释”,以更新和扩展的版本呈现了2021年的更新和扩展版本,命名为“对Instagram的作品”的命名更多。本文研究了Instagram负责人亚当·莫塞里(Adam Mosseri)撰写的陈述,他撰写了这些出版物,将其与当代文学的见解进行了比较,并通过混合方法分析调查了出版物的情感。该分析旨在表明,这些陈述以特别积极的光,轻描淡写和在很大程度上忽略潜在损害的情况下呈现算法。陈述的伪造透明度,提供了开放的单板,同时通过掩盖了诸如数据提取和最大化之类的实践,尤其是在对社交网站的批评中提高批评中,从而掩盖了更深层的经济动机。
摘要:Castanea sativa是全球重要的树坚果物种,以其多功能作用,尤其是木材和坚果生产而受到高度赞赏。如今,需要采取新的策略来实现对疾病,气候变化,更高产量和营养质量的植物弹性。 在新的植物育种技术(NPBT)中,CRISPR/CAS9系统代表了在短时间内改善植物育种的强大工具。 此外,CRISPR/CAS9构建体可以以核糖核蛋白(RNP)的形式传递到细胞中,从而避免通过原生质体技术避免外源DNA(无GMO-FRO)整合,这代表了基因编辑的有趣材料,这要归功于高度渗透性的DNA膜。 在本研究中,我们开发了从欧洲栗子体细胞胚胎开始的第一个原生质体隔离方案。 针对细胞壁消化优化的酶溶液含有1%纤维素酶Onozuka R-10和0.5%MacRozyme R-10。 在黑暗条件下在25℃孵育4小时后,获得了4,500,000个原生质体/mL的产率(可行的91%)。 使用GFP标记基因评估转染能力,转染原生质体的百分比为51%,在转染事件后72小时。 然后对靶向植物去饱和酶基因的直接递送进行了纯化的RNP。 结果揭示了CRISPR/CAS9 RNP和有效的原生质体编辑的预期目标修饰。如今,需要采取新的策略来实现对疾病,气候变化,更高产量和营养质量的植物弹性。在新的植物育种技术(NPBT)中,CRISPR/CAS9系统代表了在短时间内改善植物育种的强大工具。此外,CRISPR/CAS9构建体可以以核糖核蛋白(RNP)的形式传递到细胞中,从而避免通过原生质体技术避免外源DNA(无GMO-FRO)整合,这代表了基因编辑的有趣材料,这要归功于高度渗透性的DNA膜。在本研究中,我们开发了从欧洲栗子体细胞胚胎开始的第一个原生质体隔离方案。针对细胞壁消化优化的酶溶液含有1%纤维素酶Onozuka R-10和0.5%MacRozyme R-10。在黑暗条件下在25℃孵育4小时后,获得了4,500,000个原生质体/mL的产率(可行的91%)。使用GFP标记基因评估转染能力,转染原生质体的百分比为51%,在转染事件后72小时。然后对靶向植物去饱和酶基因的直接递送进行了纯化的RNP。结果揭示了CRISPR/CAS9 RNP和有效的原生质体编辑的预期目标修饰。
摘要:核糖开关驻留在RNA的未翻译区域,并通过小分子的结合来调节与必需代谢物的生物合成有关的基因。自从本世纪初的发现以来,核糖开关被视为潜在的抗菌靶标。使用X射线晶体学指导的片段筛选,高通量筛选和有理配体设计,已经确定了针对各种核糖开关的铅化合物。在这里,我们回顾硫胺素焦磷酸盐(TPP),氟单核苷酸(FMN),GLMS,Guanine和其他核糖开关的当前状态和适用性,作为抗菌靶标,并在生物学环境中进行讨论。此外,我们重点介绍了核糖开关药物发现中的挑战,并强调开发核糖开关的特定高通量筛选方法的必要性。
nzy核糖核酸酶抑制剂是一种从大肠杆菌中纯化的重组蛋白。它通过以1:1的比例非共归因于胰腺类型(例如RNase A,RNase B和RNase C)抑制胰腺类型的核糖核酸(RNase; EC 3.1)的活性。nzy核糖核酸酶抑制剂在RNase污染是潜在问题的任何应用中都是有用的。例如,它可用于保护cDNA合成反应,RT-PCR或体外转录/翻译中的模板RNA,并在体外复制过程中保护病毒RNA。此外,它将在RNA分离和纯化和无RNase抗体制备过程中抑制RNase。nzy核糖核酸酶抑制剂对RNase 1,RNase T1,RNase T2,S1核酸酶和RNase H.
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年3月31日发布。 https://doi.org/10.1101/2023.03.03.31.535108 doi:Biorxiv Preprint
碳化硅(SIC)MOSFET通过提供出色的效率,可靠性和紧凑性来改变医疗设备的设计和功能。尽管基于标准的硅电源设备,SIC MOSFET可提供增强的电气和热性能,包括更高的击穿电压,较低的开关损耗以及改善的导热率。在医疗保健应用中,准确性,能源效率和操作的可靠性至关重要,这些特征是极为重要的SIC MOSFET,可以提高功率密度,并提高医学成像系统(例如CT和MRI扫描仪)的开关速度,从而提高了图像质量和减少系统大小。可穿戴和便携式医疗设备的出色效率有助于缩小尺寸并延长电池寿命。此外,确保在重症监护环境中的可靠性,SIC MOSFET提高了手术,诊断工具和生命支持系统的仪器效率。在本文中介绍了SIC MOSFET在改善医疗保健技术方面的重要性,以及它们的主要特征,与医疗保健,现场的应用以及其与医疗保健系统的好处有关。SIC MOSFET有可能成为先进的医疗电子产品的基本要素,因为医疗保健行业逐渐融合了精致和能源密集型技术,因此可以在临床和便携式护理解决方案中发展。
白内障是全球失明的主要原因。先天性或小儿白内障也可能导致永久性视力障碍或失明,即使尝试进行最佳尝试。很大一部分小儿白内障具有遗传原因。因此,识别导致白内障形成的基因对于理解遗传性小儿白内障的病理过程以及新疗法的发展至关重要。尽管基因组技术取得了明显进展,但对新鉴定的候选基因和变体的生物学效应的验证仍然具有挑战性。在这里,我们提供了一条逐步的管道,使用CRISPR-CAS9核糖核蛋白复合物(RNP)评估F0斑马鱼中的白内障候选基因。包括CRISPR-CAS9 RNP设计和配方的详细片段,微注射,CRISPR-CAS9 RNP RNP剂量和交付途径的优化,编辑功效分析以及白内障形成评估。遵循此协议,可以在2周内使用基本实验室供应在2周内轻松评估任何白内障候选者。
RNase T1 是一种来源于米曲霉 (Aspergillus oryzae) 的核糖核 酸内切酶,可特异性地在单链 RNA 的鸟嘌呤核糖核苷酸 (G) 后进行 切割,产生 3' 磷酸末端。 RNase T1 能够形成核苷 2' , 3'- 环磷酸中 间体,以切割 3'- 鸟苷残基与邻近核苷 5'-OH 基团之间的磷酸二酯键, 产生含末端 3'-GMP 的寡核苷酸和 3'-GMP 。
GenScript 提供多种 Cas 酶,包括 Cas9、Cas12 和 Cas13 核酸酶,可实现更高的特异性、减少脱靶效应、增强递送、符合 GMP 以及使用增强荧光标签立即检测。