尽管在过去几十年中取得了巨大进步,但治疗失败仍然是抗癌疗法的重大负担。肿瘤细胞倾向于通过克隆进化和抗性亚克隆的选择来逃避化疗,从而导致治疗复发。下一代测序旨在找到耐药性癌细胞串扰中有希望的候选变异。这种方法可能进一步有助于分子肿瘤板适应每个患者的靶向治疗方案(1)。髓增生性综合征慢性髓样白血病(CML)成为有效且成功的靶向治疗的榜样。cml是一种罕见的肿瘤,主要是由相互易位t(9; 22)(q34; q11)引起的,导致BCR :: ABL1融合基因的形成(2)。在许多情况下,它通过酪氨酸激酶抑制剂(TKI)成功治疗,尤其是与BCR :: ABL1激酶结合的2-苯基氨基嘧啶伊替尼,从而预防了下游靶标的磷酸化(3)。尽管总体10年生存率为83%,但在治疗的五年内,所有患者中有20%至25%遭受治疗衰竭(4,5)。第二代和第三代TKI,即尼洛替尼,达沙替尼,鲍苏替尼和庞替尼,开发了以可变成功的变化(6,7)克服这种抗药性(6,7)。TKI抗性发生在依赖性或独立于BCR :: ABL1激酶改变。第一个提及的主要是由BCR :: abl1中的突变引起的,例如ABL1 p。(Tyr253His),p。(GLU255VAL)或p。(THR315ile))防止TKIS与BCR或BCR expristion TKIS结合,以防止TKIS与BCR :: ABCR1 anbl1 anbl1 and anbl1 and anbl1fination and Overection(8)。对于BCR :: ABL1-独立抵抗力,讨论了几种机制,例如,药物过表达EF ef lox top子转运蛋白,尤其是ATP结合盒(ABC)转运蛋白转运蛋白家族成员P-糖蛋白(P-GP,P-GP,ABCB1)或乳腺癌抗癌蛋白(BCRP,ABCG2)的传播(abcg2)的demaption(p-gp,abcb1),abcg2 abcg2 ryaption(abcg2)。 10)。此外,显示遗传像差,例如第8条或影响RUNT相关转录因子1(RUNX1)的突变,显示出患者中爆炸危机或抗TKI耐药性克隆的进展(11,12)。除了临床研究外,体外模型还可以详细研究耐药性的机理。这样的模型是关键工具,因为这些模型从这些模型中得出的发现被成功地转化为诊所,例如预测药物效率并改善治疗方案(13)。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。 在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。 为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。 我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。 此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。
电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
在天然档案中应用10的先决条件进行太阳能和地磁重建,就是要知道如何将10归因于沉积反映大气生产的变化。但是,这种关系仍在争论中。为了解决这个问题,我们使用了两种最新的全球模型Geos-Chem和eCham6.3-Ham2.3与最新的铍生产模型。在太阳调制过程中,这两个模型都表明10个沉积与全球产量变化成正比,纬度沉积偏见(<5%)。然而,与全球生产变化相比,在地磁调制过程中,热带和极地区域的10个沉积变化在热带地区和极地区域的衰减量增长了约15%,在亚热带和极地区域的变化增加了20%-35%。这种变化在半球上也是不对称的,归因于半球之间的不对称产生。对于公元774/5的极端太阳能质子事件,极性区域的沉积增加比热带地区高15%。本研究强调了从不同位置或独立地磁场记录进行比较时,大气混合的重要性。
SARS-COV-2中和抗体被认为是保护的相关(2)。然而,已知这种保护会随着关注的变体的出现(VOC)的出现而降低(3),并在远离宿主的适应性反应的关键中和表位中有多个突变。随着时间的流逝,体液反应也会显着减弱,尤其是在65岁以上的免疫功能低下的人或个人中。这突出了需要更长持久和更广泛的保护性疫苗的需求。在能够引起交叉反应反应的冠状病毒蛋白中,结构性核素蛋白(N)蛋白具有很大的兴趣,这是病毒复制过程中最丰富的蛋白质之一,并考虑了其在sarbecovires跨肉毒杆菌跨肉毒杆菌的高度同源性(4-6)。N蛋白是COVID-19期间SARS-COV-2特异性T细胞反应的突出靶标,并且T细胞免疫在控制SARS-COV-2感染中的作用现已广泛认识(7)。SARS-COV-1 N-特异性记忆T细胞在2002 - 2003年在2003年SARS爆发期间感染的人与SARS-COV-2(8)的N蛋白进行了反应,因为两个N蛋白具有90%同源性(4)。SARS-COV-2 N特异性CD8 + T细胞已与防御严重疾病,控制病毒复制的控制以及对多种变体(Alpha,beta,Gamma和Delta)保持至少6个月的抗病毒效率(9)。n特异性抗体反应也通过引发NK介导的和抗体依赖性细胞毒性(ADCC)对感染细胞的NK介导的和抗体依赖性细胞毒性(10),也与肺中的病毒清除率相关(10)。因此,针对N的免疫反应对于开发广谱疫苗至关重要。OVX033是一种重组疫苗候选者,包括SARS-COV-2病毒(Wuhan原始菌株)的全长核素抗原。n抗原被遗传融合到OVX313序列(寡素®),Osivax的自组装结构域,可提高抗原免疫原性(11)。与旨在产生抗体反应中和循环SARS-COV-2病毒的抗体反应的疫苗相反,OVX033 N的基于OVX033 N的疫苗旨在杀死受感染的细胞,从而限制感染和疾病症状。作为N在SARBECOVIRES中良好保守,OVX033疫苗被认为可以类似地保护各种SARBECOVIRUS菌株。在本文中,我们介绍了提供的交叉保护的第一个结果
与正在进行的I期试验(NCT03784625)相符的摘要,该试验专门针对黑色素瘤靶向放射性核素治疗(TRT),我们探索了免疫系统与黑色素配体[131 I] ICF01012单独或与免疫治疗疗法合并的相互作用(ICF01012)。在这里我们证明[131 I] ICF01012诱导免疫原性死亡,其特征是细胞表面暴露的膜联蛋白A1和钙网蛋白的显着增加。与免疫功能低下相比,[131 I] ICF01012增加了免疫能力小鼠的存活率(29 vs. 24天,p = 0.0374)。流式细胞仪和RT-QPCR分析强调[131 I] ICF01012诱导肿瘤微环境中的适应性和先天免疫细胞募集。[131 I] ICF01012与ICI(抗CTLA-4,抗PD-1,抗PD-L1)的组合表明,公差是一种主要的免疫逃逸机制,而TRT后不存在疲劳。此外,与单独使用TRT相比,[131 I] ICF01012和ICI组合有系统地导致生存率延长(P <0.0001)。具体而言,[131 I] ICF01012 +抗CTLA-4组合与单独的抗CTLA-4相比显着提高生存率(41 vs. 26天; P = 0.0011),而没有毒性。这项工作代表了TRT诱导的抗肿瘤免疫反应修饰的首个全局表征,表明耐受性是一种主要的免疫逃逸机制,而将TRT和ICI结合在一起是有希望的。
摘要:靶向放射性核素疗法作为一种核医学的亚科越来越突出。数十年来,用放射性核素的治疗主要仅限于在甲状腺疾病中使用碘-131。当前,正在开发由放射性核素组成的放射性药物,该放射性核素与载体结合了与所需的具有高特异性生物学靶的载体。目标是在肿瘤水平上尽可能选择性,同时限制在健康组织水平上接受的剂量。近年来,对癌症的分子机制以及创新靶向剂(抗体,肽和小分子)的外观以及新的放射性病的可用性,在矢量化的内部辐射方面具有相当大的进步,并具有更大的进步,并具有更好的治疗性治疗性的治疗性和延伸性的散发性和散发性的散发性,并具有个性化的安全性,并具有个性化的安全性,并具有个性化的安全性,并具有更高的性能。例如,针对肿瘤微环境而不是癌细胞,现在似乎特别有吸引力。几种用于治疗靶向的放射性药物已显示出几种类型的肿瘤的临床价值,并已或将很快被批准并授权用于临床使用。在他们的临床和商业成功之后,该领域的研究尤其不断增长,临床管道似乎是一个有希望的目标。本综述旨在概述有关靶向放射性核素治疗的当前研究。
能量数据包网络(EPN)由n个块形成的排队网络组成,其中每个块由一个数据队列形成,该数据队列处理工作负载和一个能量队列,可以处理能量包。我们研究一个EPN模型,其中能量数据包启动转移。在此模型中,能量数据包被发送到同一块的数据队列。如果数据队列不是空的,则能量数据包将一个工作负载数据包路由到下一个块,否则会丢失。我们假设能量队列具有有限的缓冲尺寸,并且如果缓冲区满足时,可以执行缓冲区时能量数据包到达系统,则执行跳跃障碍(JOB),因此,由于某种概率,它将发送到数据队列,否则会丢失。我们首先提供了跳跃阻塞概率的值,以便队列中数据包的稳态概率分布允许产品形式解决方案。在FCF,Preemptive LCF和PS纪律下为多类数据包队列建立了产品表格。此外,在有向树排队网络的情况下,我们表明每个子树中的数据数据包数量随着每个块的工作概率增加而减小。©2021作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:成熟的B细胞通过类开关重组(CSR)显着使免疫球蛋白(IG)生产多样化,从而允许遥远的“开关”区域的连接。CSR是由Activation诱导的脱氨酶(AID)启动的,该酶(AID)靶向在转录的靶向S区域的单链DNA中充分暴露的细胞糖苷,具有对WRCY基序的特定亲和力。在MAM-MALS中,富含G的序列还存在于S区域,形成有利于CSR的规范G-四链体(G4S)DNA结构。与G4-DNA(G4配体)相互作用的小分子被证明能够在B淋巴细胞中调节CSR,这要么积极地(例如核苷二磷酸激酶同工型)或负面的(例如RHPS4)。G4-DNA也与转录的控制有关,由于它们对CSR和转录调控的影响,富含G4的序列可能在B细胞恶性肿瘤的自然史上起作用。由于G4-DNA位于基因组中的多个位置,尤其是在癌基因启动子中,因此尚待澄清它如何更具体地促进生理学中的合法CSR,而不是致病性易位。G4结构在转录DNA和/或相应的转录本和重组中的特定调节作用似乎是理解免疫反应和淋巴结发生的主要问题。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 8 月 6 日发布。;https://doi.org/10.1101/2024.08.02.606075 doi:bioRxiv preprint