名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
气密性测试要求旨在测量气密性并确定与空气泄漏相关的问题,这些问题会影响整体建筑性能、能源效率和室内空气质量。这是通过在 75 帕斯卡 (Pa) 的压力下对建筑物外壳进行整栋建筑空气泄漏测试来实现的,该测试模拟了建筑物因温度和风的变化而经历的典型情况。该实践包括密封所有可操作的开口并对建筑物加压以测量通过外壳的空气泄漏阻力。表 4 提供了机构和商业建筑的性能和提交要求摘要。
ISSN 标题 STRATE 21775141 (NT) 翻译文学杂志 22375953 (重新)思考法律 B4 24093823 [C]COMPASSESWORLD:建筑和室内设计国际网络 |中东 NP 24694312 [IN] 过渡 B2 23187344 @巴西教育登记册 23280662 # ISOJ 杂志 C 22380272 #10.ART NP 19839537 14TH NP 1981030X 19&20(里约热内卢) B1 23179953 1ST 分析 - SEADE NP 00942898 2010 第 42 届东南系统理论研讨会 (SSST) NP 22364285 20TH。 COMPÓS NP 20531583 2D 材料 A2 22376143 第二届巴西生产工程大会 NP 22378758 第二届葡萄牙语教学国际研讨会 B1 21905738 3 生物技术 A4 16682939 30-60 CUADERNO LATIN AMERICANO DE ARQUITECTUR C 23297662 3D 打印和增材制造 A2 23297670 3D 打印和增材制造(在线) A2 16194500 4OR(柏林) A2 18081142 5% 建筑 + 艺术 A4 21758182 53 巴西混凝土大会 - IBRACON 201 C 21758174 54 巴西混凝土大会 CBC 201 C 21758132 978-85-98936-04-8 NP 25256556 私人关系范围内基本权利的(不可)追加性。 B4 01047922 水杂志 C 22366695 BARRIGUDA:科学杂志 B3 25948245 BRUX C 08711097 城市(PORTALEGRE C 22370455 大学与社区之间的对话交流 B4 15487083 逆流(北卡罗来纳州罗利) B3 21451958 CONTRATIEMP C 25949675 字母的颜色 A3 14158973 字母的颜色(UEFS) A3 00117641 国防 B4 14136090 经济杂志 B3 22362029 经济杂志 - AERE B3 19836422 学校物理学(印刷版) B1 15578100 A 综合生物学杂志 A4 00239135 A LAVOURA (RIO DE JANEIRO C 19841035 A 阅读:PAR 州高等司法行政官学院笔记本 C 21752516 A 边缘:人文科学、文学和艺术电子杂志 B3 16473248 A 教育页面 NP 22364536 A PALAVRAD C 21763356 A PALO SECO:哲学和文学著作 C 21756104 A PESTE:精神分析与社会 C 2319037X FOC 杂志 C 16760336 第三年龄 B4 21751951 不死者的生活 C 00445592 A. RIVISTA ANARCHIC C 00946354 AANA 杂志 A3 15163210 A&C.行政与宪法杂志(印刷版) A2 24485764 A&H B2 23626089 A&P CONTINUITY A4 10283072 AAA。安蒂兰建筑文件 C 15597776 AACN 高级重症监护 B1 12321966 AAEM。农业与环境医学年鉴 B3 01491423 AAPG 公报(印刷版)A1 15221059 AAPS PHARMSCI A3 15309932 AAPS PHARMSCITECH A3
对无限层镍酸盐的研究已经揭示了一个破裂的翻译对称性,这对其根部引起了浓厚的兴趣,与超导性的关系以及与丘比特的电荷顺序的比较。在这项研究中,在无限层Prnio 2+ 𝛿薄膜上进行了谐振X射线散射测量。与PR𝑀5共振在依赖能量,温度和局部对称性的pr𝑀5共振相比,Ni𝐿3吸收边缘在Ni𝐿3吸收边缘处的超晶格反射的显着差异。这些差异指出了两个不同的电荷顺序,尽管它们具有相同的平面内波vector。鉴于在不完全降低的prnio 2+膜中观察到谐振反射,这些差异可能与多余的氧气掺杂剂有关。此外,方位角分析表明,氧配体在Ni𝐿3共振下揭示的电荷调制中可能起关键作用。
简介:高级别浆液性卵巢癌 (HGSOC) 是上皮性卵巢癌 (EOC) 中最常见和最致命的亚型,每年导致超过 140,000 人死亡。由于缺乏筛查方法,发病率和死亡率加剧,复发也很常见。纤溶酶原激活剂抑制剂 1 (PAI-1,SERPIN E1 的蛋白质产物) 参与止血、细胞外基质 (ECM) 重塑以及肿瘤细胞迁移和侵袭。过度表达与 EOC 预后不良有关。血小板显著增加体外癌细胞中的 PAI-1,并可能导致循环肿瘤细胞 (CTC) 的血源性转移。CTC 是活的肿瘤细胞,它们通常在血小板的帮助下进入血管并通过循环系统传播,有可能形成继发性转移。在这里,我们提供证据表明 PAI-1 是血小板-癌细胞相互作用组的核心,并在转移级联中发挥作用。
摘要:压力事件触发了一组复杂的生物学反应,这些反应跟随钟形的表演。低压力条件已显示出会引起有益的影响,特别是对突触可塑性以及认知过程的增加。相比之下,过度强烈的压力可能会产生有害的行为影响,从而导致几种与压力相关的病理,例如焦虑,抑郁,吸毒,强迫症和压力和创伤相关疾病(例如,在创伤事件的情况下,创伤后应激障碍或PTSD)。多年来,我们已经证明,海马中的糖皮质激素激素(GCS)响应于胁迫,介导了组织纤溶酶原激活剂(TPA)表达之间的平衡及其自身抑制剂纤溶酶纤溶酶质激活剂抑制剂-1(PAI-1)蛋白之间的平衡之间的分子转移。有趣的是,有利于PAI-1的转变负责PTSD样记忆诱导。在这篇综述中,在描述了涉及GC的生物系统之后,我们强调了TPA/PAI-1不平衡在临床前和临床研究中观察到的关键作用,与应激相关病理条件的出现相关。因此,TPA/PAI-1蛋白水平可以是随后发作与压力相关疾病的预测生物标志物,其活性的药理调节可能是这些使这些衰减疾病的潜在新治疗方法。
这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。
参考文献 • Fay WP、Parker AC、Condrey LR、Shapiro AD。人类纤溶酶原激活剂抑制剂-1(PAI-1)缺乏症:PAI-1 基因无效突变大家族的特征。Blood。1997 年 7 月 1 日;90(1):204-8。PubMed 上的引用(https://pubmed.ncbi.nlm.nih.gov/9207454) • Flevaris P、Vaughan D。纤溶酶原激活剂抑制剂 1 型在纤维化中的作用。Semin Thromb Hemost。2017 年 3 月;43(2):169-177。 doi:10.1055/s-0036- 1586228。Epub 2016 年 8 月 24 日。PubMed 引用 (https://pubmed.ncbi.nlm.nih.gov/27556351) • Heiman M、Gupta S、Lewandowska M、Shapiro AD。完全型纤溶酶原激活剂抑制剂 1 缺乏症。 2017 年 8 月 3 日 [2023 年 2 月 23 日更新]。见:Adam MP、Feldman J、Mirzaa GM、Pagon RA、Wallace SE、Amemiya A,编辑。 GeneReviews(R)[互联网]。西雅图(华盛顿州):华盛顿大学西雅图分校; 1993-2025。可从 http://www.ncbi.nlm.nih.gov/books/NBK447152/ 获取 PubMed 引文 ( https://pubmed.ncbi.nlm.nih.gov/28771291 )