在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。
在核聚变能源路线图中,示范核聚变反应堆 (DEMO) 将在 ITER 之后建成。DEMO 的建设将于 2040 年左右开始,这对成功开发抗中子材料提出了严格的时间要求,因为这些材料必须在 DEMO 设计完成之前获得认证。除了已经在裂变谱中观察到的位移损伤之外,一个关键问题是氦脆化对材料的影响,对于高能中子来说尤其重要。虽然全性能国际聚变材料辐照设施 (IFMIF) 提供了理想的聚变中子源装置,正如快速通道方法中已经确定的那样,用于测试达到聚变发电厂 (FPP) 预期的辐射损伤水平的材料,但根据当前欧洲路线图,DEMO 的时间表规定,测试必须比目前预计的完整 IFMIF 更早开始。
量子计算、人工智能的首次亮相或新的蛋白质设计解决方案都引起了极大的兴奋。麦肯锡公司称,仅人工智能一项就可能在未来十年为全球经济再增加 13 万亿美元。核聚变或癌症治疗的潜在价值难以估量。
首款通过核聚变增强的电力推进装置 纽约市,纽约州 — RocketStar Inc. 成功演示了 FireStar Drive,这是一种使用核聚变增强脉冲等离子体的突破性航天器电力推进装置。这种创新装置通过利用一种独特的无中子核聚变形式,显著提高了 RocketStar 基础水燃料脉冲等离子推力器的性能。基础推力器通过水蒸气电离产生高速质子。当这些质子与硼原子的原子核碰撞时,硼原子发生聚变,转变为高能碳,并迅速衰变成三个阿尔法粒子。通过将硼引入推力器的排气管,FireStar Drive 实现了这一聚变过程。与加力燃烧室通过将燃料引入排气管来增强喷气发动机推力的方式类似,推进器排气管中发生的聚变显著提高了其性能。发现 这一核聚变发现首次出现在 AFWERX 的 SBIR 第 1 阶段。当时,硼化水被引入脉冲等离子推进器的排气羽流中。这产生了阿尔法粒子和伽马射线,这是核聚变的明显迹象。它在随后的 SBIR 第 2 阶段得到了进一步验证。在佐治亚州亚特兰大的佐治亚理工学院高功率电力推进实验室 (HPEPL),它不仅产生了电离辐射,还将基础推进装置的推力提高了 50%。“ RocketStar 不仅逐步改进了推进系统,而且通过应用新概念在排气中产生聚变-裂变反应,实现了飞跃,”新墨西哥大学核工程教授 Adam Hecht 表示。“这是技术发展中激动人心的时刻,我期待着他们未来的创新。”“我们的团队已经探索了一段时间,我们对初步测试的结果感到非常兴奋,”RocketStar 首席执行官 Chris Craddock 表示。 “在佛罗里达的一次会议上,我在一张餐巾纸上勾勒出这个想法,并向 Miles Space 的创始人 Wes Faler 描述了它。他在开发基础推进器和聚变增强器方面非常聪明。我们收购了 Miles Space,Faler 现在是我们的首席技术官。所以现在我很高兴能够让我们已经非常出色的推进器进行聚变增强,并显著提高性能。感谢 AFWERX 和 USSF 相信这是可能的!” 下一步 RocketStar 的现有推进器现已可供客户交付。它被称为 M1.5,将作为 D-Orbit 专有的 OTV ION 卫星运载器上的托管有效载荷在太空中进行演示,该卫星运载器将执行计划于今年 7 月和 10 月进行的两次 SpaceX 运输机任务。
• 定义核能人工智能 • 核能人工智能是指应用人工智能技术和算法来增强、优化和简化核技术的各个方面。 • 这包括核反应堆运行、辐射探测、核材料分析、废物管理,甚至控制核聚变等领域。 • 通过利用人工智能的模式识别、复杂数据分析和决策能力,核能人工智能旨在通过提高效率、安全性和可持续性来彻底改变核工业。
核数据是各个领域的基础,包括核裂变和核聚变、粒子加速器、医学成像、癌症治疗、太空任务等。对于制造商和行业参与者来说,这意味着直接接触可能影响其产品和技术的最新研究和发展。会议涵盖了广泛的主题,例如核反应测量、医疗应用、核废料管理和临界安全,所有这些主题对于推进核相关行业的技术和安全性都至关重要。
日本国家量子科学技术研究院 (QST) 致力于通过与量子科学技术相关的研究和开发创造和提供新价值,从而为实现经济、社会和环境和谐的可持续未来社会做出贡献。QST 的独特之处在于它基于量子科学和技术推动从能源开发到生命科学和医学的广泛研究和开发,并拥有各种大型研发设施和设备,包括量子束设施、聚变能源设施和研究医院。QST 的世界级大型研发设施和设备不仅广泛应用于 QST 内部的研发,还被大学和其他机构广泛使用,为国家研究和开发机构所要求的“研究成果最大化”做出了贡献。量子科技中心被指定为国家量子技术创新中心中的基础量子技术中心和量子生命研发中心,推动量子设备关键材料量子材料的研究和开发,以及将量子技术与生命科学和医学联系起来的量子生命技术的使用。此外,我们被指定为核聚变能源创新战略下的核聚变技术创新中心,在“在地球上创造太阳!”的口号下,为实现核聚变能源发电而进行研究和开发。在生命科学和医学领域,我们旨在通过重离子癌症放射治疗、靶向放射性核素治疗和用于诊断痴呆症和其他疾病的成像技术,为实现健康长寿社会做出贡献。此外,QST 已被指定为核心先进辐射应急医疗支持中心,并从事与辐射暴露医学和辐射效应相关的技术开发和人力资源培训。利用迄今为止培育的量子光束生成技术开发和安装的3 GeV同步辐射装置NanoTerasu将于2024年4月开始创造创新材料和设备并将其应用于工业。QST的第二个中长期计划于2023年4月开始。通过进一步升级迄今为止建立的世界最先进、高性能的大型研发设施及其基础技术,QST旨在通过我们与日本和海外研究人员之间的合作创造和设施共享来促进创新研究和开发,并不仅要在量子科学技术方面,而且在其他广泛领域也处于世界领先地位。
摘要 多年来,国际社会一直在研究利用核聚变反应产生的热量发电的核聚变的适用性。迄今为止,还没有一种设计能够产生能量,更不用说电力了,但 ITER 等大型国际项目所做的工作表明,新的反应堆设计比以往任何时候都更接近实现这一目标。因此,重要的是要考虑传统的防扩散制度是否以及如何涵盖利用核裂变热量的传统核反应堆发电。出口管制制度对于确保支持合法项目的商品和技术(如核电生产所需的商品和技术)不会被转用于大规模杀伤性武器 (WMD) 计划非常重要。具体来说,核供应国集团 (NSG) 涵盖了从加工铀到燃料生产(及以后)的一系列商品。虽然 NSG 的双重用途清单涵盖了氚以及生产氚所需的靶组件和部件,但目前尚不清楚核聚变发电是否需要其他独特商品,以及这些商品是否会受到 NSG 的保护。为此,本文将研究和开发通过聚变反应发电的系统所需的商品和技术,并将这些商品与核供应国集团已经控制的商品和技术进行对比。一般来说,考虑将出口管制作为解决与聚变反应堆相关的扩散问题的工具的最佳领域是与下一代锂同位素浓缩有关。
1 室 反应堆系统技术 2 室 反应堆物理与计算科学 3 室 核设施退役与放射性废物管理 4 室 核燃料与核能 核燃料与材料 5 室 核热工水力学 6 核安全7 处 辐射防护处 8 辐射利用与仪器仪表处 9 量子工程与核聚变处 10 核电站建设与运行技术处 11 核政策、人力资源与合作处 12 核仪器仪表与控制、人机工程与自动遥测(核工业与自动化) C,人为因素和自动远程系统)