1)Wohlers, T.:Wohlers Report 2005, p.157, Wohlers Associate Inc., CO, USA(2005 年) 2)https://www.aligntech.com/solutions(访问日期 2020/02/24) 3)Imagawa, Edagawa 等:Phys. Rev. B, 82(11),115116(2010 年) 4)Niino, Hamajima 等:Biofab, 3(3),034104(2011 年)
研究文章|人类脑活动的系统/电路在人类上部核中https://doi.org/10.1523/jneurosci.1730-23.2024收到:2023年9月13日被修订:2023年11月29日接受:2024年1月9日,2024年1月9日,2024年1月29日,授权
摘要:芯鞘电纺丝是一种生产含有一种或多种封装功能材料的复合纤维的强大工具,但许多材料组合很难甚至不可能一起纺丝。我们表明,成功的关键是确保明确界定的芯鞘界面,同时保持该界面上恒定且最小的界面能。使用热致液晶作为模型功能芯,使用聚丙烯酸或苯乙烯-丁二烯-苯乙烯嵌段共聚物作为鞘聚合物,我们研究了使用水、乙醇或四氢呋喃作为聚合物溶剂的影响。我们发现理想的芯和鞘材料是部分可混合的,其相图显示内部可混合间隙。完全不混溶会产生相对较高的界面张力,这会导致芯断裂,甚至阻止芯进入产生纤维的喷射流,而在完全混溶的情况下,由于缺乏明确的界面,会消除芯-鞘形态,并将芯变成鞘溶液的凝固浴,导致泰勒锥中过早凝胶化。此外,为了最大限度地减少由于局部界面张力变化而导致的泰勒锥中的马兰戈尼流,在纺丝之前应在芯中添加少量鞘溶剂。我们的发现解决了长期以来关于在芯-鞘静电纺丝中选择芯和鞘流体的指导方针的困惑。这些发现可以应用于除本文研究的材料组合之外的许多其他材料组合,从而能够制备出具有广泛兴趣和应用潜力的新型功能复合材料。■ 简介
将 NH 小节和其他核规范案例合并,并添加石墨堆芯部件的建造规则,形成新的第 III 节第 5 分部高温反应堆建造规则。
将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
6 NEA,“核电在氢经济中的作用:成本和竞争力”,2023年3月1日,可在此处获得。 7根据NEA报告,“在欧盟和核新建中生产太阳能的氢的成本在很大程度上相似。 [..]一般而言,从廉价电力(例如摊销核电)中受益的技术(例如) 核-LTO)和可再生能源在具有较高资源捐赠的地点(例如) solar-me和solar-na)提供非常有竞争力的氢,约为每kgh2 2美元”(§2.2.2)。 关于氢存储,运输和分配成本,NEA报告强调,“具有稳定产生的系统(即核)的储存,运输和分配成本,其比具有可变生产的系统(即可变可再生能源)低四到五倍。 ”(§2.4)。 8从委员会到欧洲议会,欧洲理事会,理事会,欧洲经济和社会委员会以及该地区委员会,2022年5月18日,Repowereu计划,COM/2022/230最终,可在此处获得。6 NEA,“核电在氢经济中的作用:成本和竞争力”,2023年3月1日,可在此处获得。7根据NEA报告,“在欧盟和核新建中生产太阳能的氢的成本在很大程度上相似。[..]一般而言,从廉价电力(例如摊销核电)中受益的技术(例如核-LTO)和可再生能源在具有较高资源捐赠的地点(例如solar-me和solar-na)提供非常有竞争力的氢,约为每kgh2 2美元”(§2.2.2)。关于氢存储,运输和分配成本,NEA报告强调,“具有稳定产生的系统(即核)的储存,运输和分配成本,其比具有可变生产的系统(即可变可再生能源)低四到五倍。”(§2.4)。8从委员会到欧洲议会,欧洲理事会,理事会,欧洲经济和社会委员会以及该地区委员会,2022年5月18日,Repowereu计划,COM/2022/230最终,可在此处获得。
此外,人工智能还用于核工业,以增强自动化、进行燃料补给和维护规划、培训核人员进行正常和异常操作、进行在役检查、裂纹和缺陷的评估和表征、用于反应堆设计、安全、保障、实时风险评估、长期运行/寿命应用、加强工作场所安全以及基于计算机模拟的在线剂量测定。然而,人工智能的变革力量也带来了挑战,包括透明度、信任和安全问题以及其他道德问题。
• 定义核能人工智能 • 核能人工智能是指应用人工智能技术和算法来增强、优化和简化核技术的各个方面。 • 这包括核反应堆运行、辐射探测、核材料分析、废物管理,甚至控制核聚变等领域。 • 通过利用人工智能的模式识别、复杂数据分析和决策能力,核能人工智能旨在通过提高效率、安全性和可持续性来彻底改变核工业。