流感病毒是全球范围内引起公共卫生关注的呼吸道病原体,每年导致多达 650,000 人死亡。季节性流感病毒疫苗可用于预防疾病,但效果有限。开发一种具有引发持久、广泛交叉反应免疫反应潜力的通用流感病毒疫苗对于降低流感病毒的流行率至关重要。在本研究中,我们利用脂质纳米颗粒包裹的核苷修饰的 mRNA 疫苗皮内递送保守的流感病毒抗原组合(血凝素柄、神经氨酸酶、基质-2 离子通道和核蛋白),并在小鼠模型中诱导具有广泛性和效力的强烈免疫反应。核苷修饰的 mRNA 脂质纳米颗粒疫苗在单次免疫后即可产生免疫力,可抵御 500 倍半数致死剂量的大流行性 H1N1 病毒的攻击,而联合疫苗在 50 ng/抗原剂量下可预防发病。单剂量联合疫苗的广泛保护潜力已通过一组 1 组甲型流感病毒的攻击得到证实。这些发现支持将表达多种保守抗原的核苷修饰的 mRNA 脂质纳米颗粒疫苗作为通用流感病毒疫苗候选物。
肠病毒(EVS)被分类为Picornaviridae家族中肠病毒属的成员。这些非发育的单链RNA病毒具有封装在病毒衣壳中的基因组,形成直径约为20-30 nm的对称二十面体颗粒(1,2)。肠内病毒属包括12种肠病毒物种(A-L)和3种鼻病毒物种(RV A-C)。属于肠病毒的肠病毒A71(EV-A71)通过粪便途径传输物种(2,3)。ev-A71于1969年在美国加利福尼亚州的无菌性脑膜炎的婴儿的粪便标本中首次分离出来(4)。从那时起,EV-A71的许多爆发和流行病已在全球范围内报道(5-8),自1990年代后期以来,亚太地区的出现了显着的事件(9)。EV-A71主要影响五年以下的儿童,是手,脚和口腔疾病(HFMD)的主要病因之一,通常在1 - 2周内作为一种自我限制疾病解决。但是,在严重的情况下,EV-A71会引起神经系统并发症,导致预后不良甚至死亡,对婴儿和幼儿构成重大健康威胁。因此,EV-A71被认为是脊髓灰质炎病毒后最显着的神经肠病毒(10-12)。EV-A71基因组长约为7,500个核苷酸,编码四种结构蛋白(VP1至VP4)和7种非结构性蛋白质(2A至2C至2C和3A至3D)。结构蛋白VP1至VP4首先结合形成杂种,六十个brotemer组装成一个封装病毒基因组的病毒式衣壳中(13)。暴露在衣壳的表面上,而VP4则位于内部(13,14)。VP1是由297个氨基酸组成的最免疫主导结构蛋白,并包含主要中和表位。它在EV-A71生命周期期间的病毒吸附,渗透和脱落中起着至关重要的作用,使其成为分子研究和疫苗发育的主要目标(15-17)。目前,尚无针对EV-A71的特定药物,因此支持治疗是与EV-A71相关疾病的主要治疗方法。疫苗接种是预防EV-A71的最有效,最有效的策略。最近对EV-A71疫苗的研究主要集中在灭活的疫苗(18、19),病毒样颗粒(VLP)(20-22),活疫苗(23、24)和亚基疫苗(25、26)。其中,只有灭活的EV-A71疫苗已经完成了人类的临床试验,而其他候选者仍在临床前动物评估中(27)。在2015年至2017年之间,中国食品药品监督管理局(CFDA)批准了针对EV-A71 C4子基因型的三种灭活疫苗的商业化(28-30)。III期临床试验表明,所有三种疫苗都有效地降低了与EV-A71相关的HFMD(27)。然而,灭活的疫苗面临挑战,包括高生产成本,长期发育时间表以及潜在的免疫原性,这可能导致细胞免疫反应的刺激不足(22)。作为一种有希望的多功能疫苗平台,基于mRNA的疫苗适用于传染病和癌症。此外,越来越多的证据表明,与共同循环的EV-A71菌株的突变以及造成了快速病毒进化的突变,对灭活疫苗构成了潜在的挑战(31,32)。他们提供了几个优势,包括较短的发育周期,强大的免疫原性,有利的安全性和对突变的适应性(33,34)。RNA分子修饰和
“这项交易使我们能够建立在开发一流和最佳核苷逆转录酶抑制剂的神经退行性和自身免疫性疾病的领导下,包括ALS,PSP和阿尔茨海默氏病。我们很高兴将管道扩展到包括针对各种癌症的强大治疗潜力的这种有效核苷化学治疗的组合。“我们期待将铅化合物推向临床前开发,以靶向DNA破坏维修不足的癌症,例如胰腺和结直肠癌。”
COMIRNATY COVID-19 mRNA 疫苗(核苷修饰)基于 BioNTech 专有的 mRNA 技术,由 BioNTech 和辉瑞共同开发。
限制性片段。为了制备微克量的 Hin 375、Hin 550 和 Hae 790(见图 1),将含有示踪量 lambda [32p]_ DNA(2 X 106 cpm)的 5 mg 纯化 lambda DNA 用 Hin(7)或 Hae(6)消化,乙醇沉淀,重悬于 500 ul DNA 缓冲液(5 mM NaCi、10 mM Tris-HCl,pH 7.4、1 mM EDTA)中,在含有 TBE(1)缓冲液的 3.5% 聚丙烯酰胺凝胶(6 mm X 20 cm X 40 cm)上以 320 V 电泳 23 小时。通过放射自显影定位含有适当限制性片段的凝胶部分,切除,并通过苯酚提取去除 DNA(10)。如前所述,从含有 32P 的 DNA 中分离出高比活度标记的限制性片段(2)。通过聚丙烯酰胺凝胶电泳确定每个片段的链长(1、2)。
高视力综合征(由于高IgM引起的血液厚度过多)。由于骨髓与WM细胞浸润,贫血(低红细胞计数和低血红蛋白)。贫血是导致WM治疗的最常见状况。一般而言,血红蛋白水平小于10 g/dl可以用作开始治疗的指示。由于骨髓浸润,血小板计数小于100,000(称为血小板减少症)。宪法症状 - 无力,疲劳,夜汗,发烧或体重减轻。有症状的冷冻球蛋白血症,冷凝集素疾病或严重的周围神经病。全身性淀粉样变性也应在无症状的情况下治疗。有关这些条件的更多信息,请访问“标志和症状”部分的IWMF网站。进行性淋巴结,肝脏或脾脏的症状肿大。与WM有关的肾脏疾病(肾病)。骨髓外的WM细胞质量(外部肿块) - 可以根据质量的位置,大小和生长速率开始治疗。
<非核苷M.结核病胸甲抑制剂Lijun Song,X,Roman Merceron B,C,Y,Fabian Hulpia a,Z,AinhoaLucíaLucíaD,E,E,E,E,E,贝格尼亚·格拉西(BegoñaGraci)的 电子邮件地址:Serge.Vancalenbergh@ugent.be(S。VanCalenbergh)。电子邮件地址:Serge.Vancalenbergh@ugent.be(S。VanCalenbergh)。电子邮件地址:Serge.Vancalenbergh@ugent.be(S。VanCalenbergh)。Rissen A,Tone V,Paul Cos G,JoséA。aínsad和Helena I. (FFW),根特大学,Terestsis 460,B-9000,Gent,Belgium B炎症研究中心,根特,9052,比利时C出发或Bichemisty,GHNT大学,技术园927,9052,Sworth,Ghent,Belgium d GrupogenéticsThe Micobacterias,Microbalogía部门(Ciberes),Salud Carlos III研究所,28029,马德里,肩部F蜂巢模型中心,根特大学,根特大学,根特,比利时G实验室,寄生虫学和卫生(LMPH),Departisal和Departisal and higiene或Hygiene或Higgiene或Higgiene或Higgiene或Higgiene或Higgiene或Higgiene或药物科学,安特卫普大学,校园Drie Eiken,Universiteitsplein 1,B-2610,Antwerpen,Belgium H结核病研究科,临床免疫学和微生物学实验室,美国国家过敏和感染研究所迪拉西安(Direasian),美国国家研究所(National Institute)或卫生(National Institute),9000罗克维尔·派克(Rockville Pike),贝塞斯达(Bethesda),马里兰州,20892年,美国或化学分析,部门或曲折,研究所pasterial and Chemistial,Cedu研究所。 YOR CNRS UMR3523,PAIS X 3M,瑞典右,比利时Y欧洲蛋白酶,Poitis,Poitis,Fransen Pharmaceuta,Beers,BEERS,BELGIUM关键字:胸腺支原体Tymidylats tymidylat ∗对应作者。
抽象动机:核糖核苷单磷酸盐(RNMP)是嵌入基因组DNA中的最丰富的非标准核定体。如果无法控制DNA中RNMP的存在,则可能导致基因组不稳定性。DNA中RNMP的实际正函数主要未知。考虑到RNMP嵌入与各种疾病和癌症之间的关联,近年来,DNA中RNMP的嵌入现象已成为近年来的重要研究领域。结果:我们介绍了RNMPID数据库,这是第一个揭示RNMP插入特征,链偏置和首选掺入模式的数据库,这些数据库是来自不同遗传背景的细菌至人类细胞的基因组DNA中的首选掺入模式。RNMPID数据库使用不同RNMP映射技术的数据集。它为研究人员提供了坚实的基础,以阐明多种来源的基因组DNA中嵌入的RNMP的特征及其与细胞功能的关联,以及将来的疾病。它还显着使研究人员在遗传学和基因组学领域的研究人员旨在将研究与RNMP嵌入数据融为一体。可用性:RNMPID可以在网络上自由访问,网址为https://www.rnmpid.org。联系人:xph6113@gmail.com或storici@gatech.edu
横纹肌肉瘤(RMS)是最常见的小儿软组织肉瘤。高危患者迫切需要更有效和毒性较小的疗法。肽引导的靶向药物输送可以增加封装药物的治疗指数并改善患者的福祉。要将此策略应用于RMS,我们在筛选肽与RMS细胞表面结合的肽中鉴定了肽F3。f3与核仁素结合,核酸素蛋白在RMS细胞的表面上,与健康组织相比,在RMS患者活检中,在mRNA水平上大量表达。,我们开发了F3装饰的pegypated Lipo躯体的快速微流体配方和化学治疗药物长春新碱的远程负载。的大小,表面电荷,药物负荷以及靶向脂质体的保留。增强的细胞结合和摄取。重要的是,对于RMS细胞系,带有长文克里斯丁蛋白的F3官能化脂质体的细胞毒性比非靶向脂质体高出11倍。这些结果策略表明,F3官能化的脂质体有望将有针对性的药物输送到RMS,并在体内进行进一步的保证。
I 型毒素-抗毒素 (TA) 系统通常由嵌入内膜的蛋白质毒素和直接与毒素 mRNA 相互作用以抑制其翻译的 RNA 抗毒素组成。在大肠杆菌中,symE/symR 被注释为具有非典型毒素的 I 型 TA 系统。SymE 最初被认为是一种内切核糖核酸酶,但预测其结构与 DNA 结合蛋白相似。为了更好地了解 SymE 的功能,我们使用 RNA-seq 检查异位产生它的细胞。尽管 SymE 会驱动基因表达的重大变化,但我们没有发现内切核糖核酸酶活性的有力证据。相反,我们的生化和细胞生物学研究表明 SymE 会结合 DNA。我们证明 symE 过表达的毒性可能源于其能够驱动严重的类核缩合,从而破坏 DNA 和 RNA 合成并导致 DNA 损伤,类似于过量产生类核相关蛋白 H-NS 的影响。总之,我们的结果表明 SymE 代表了一类广泛分布于细菌中的新型类核相关蛋白。