。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 22 日发布。;https://doi.org/10.1101/2022.02.10.479831 doi:bioRxiv 预印本
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
突触核酸是神经退行性疾病,其特征在于含有lewy体的α-突触核蛋白的积累。泛素化是一种关键的翻译后修饰,已被公认为是α-突触核蛋白的细胞动力学的关键调节剂,影响其降解,聚集和相关的神经毒性。本综述对当前对α-突触核蛋白泛素化的理解及其在突触核苷的发病机理中的作用,特别是在帕金森氏病的背景下。我们探索了负责α-突触核蛋白泛素化的分子机制,重点是主要通过内体溶酶体途径发生的E3连接酶和去渗透过程中涉及的降解过程中的作用。审查进一步讨论了这些机制的失调如何有助于α-核蛋白聚集和LB形成,并为将来研究α-突触核蛋白泛素化的作用提供了建议。理解这些过程可能会阐明潜在的治疗途径,这些途径可以调节α-突触核蛋白泛素化,以减轻其在突触核酸病变中的病理影响。
图1:用荧光相关光谱(FCS)量化CAS9 RNP核浓度a)工作流的实验示意图,以量化编辑所需的CAS9 RNP核浓度。b)Cas9 rnp或gRNA的扩散时间,在每个细胞中,在Hela细胞中传递,并在24小时(2.0 vs 1.0 ms,p值= 0.0004)时测量每个点,代表用两种组件扩散拟合模拟的单个细胞中平均扩散时间(图。s1)。fcs在MS中提供的扩散时间,每个FCS条件中提供至少两个生物学重复(平均值±SEM)。c)用Cas9 RNP电穿孔的HeLa细胞的FCS分析。Cas9 RNP的核浓度是剂量的函数(每个细胞Cas9)。 每个点表示单个细胞中的浓度。 fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。 通过将FCS跟踪与两个组件3D扩散方程拟合(有关详细信息,请参见方法),从而得出了所有浓度值和扩散时间。 d)(左轴)CAS9 RNP与剂量的平均核浓度显示出很强的线性相关性。 (r 2 = 0.96)。 (右轴)由FCS计算出的核浓度值和HeLa核的体积(690μm3)估计的Cas9数量(46)。 e)HELA,U2OS和HEK293T细胞的核浓度的FCS分析。 fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。Cas9 RNP的核浓度是剂量的函数(每个细胞Cas9)。每个点表示单个细胞中的浓度。fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。通过将FCS跟踪与两个组件3D扩散方程拟合(有关详细信息,请参见方法),从而得出了所有浓度值和扩散时间。d)(左轴)CAS9 RNP与剂量的平均核浓度显示出很强的线性相关性。(r 2 = 0.96)。(右轴)由FCS计算出的核浓度值和HeLa核的体积(690μm3)估计的Cas9数量(46)。e)HELA,U2OS和HEK293T细胞的核浓度的FCS分析。fcs值在NM中提供,每个FCS条件至少有两个生物学重复(平均值±SEM)。在补充表2中报告了FC的精确值,包括实验和生物学重复,平均值和SEM
帕金森氏病(PD)和其他突触核心病的特征在于脑细胞中α-核蛋白(α -Syn)的聚集和沉积,形成不溶性内含物,例如Lewy身体(LBS)和Lewy Neurites(LNS)。α -syn的聚集是一个复杂的过程,涉及从其天然随机线圈到富含β-呈β-片的定义明确的二级结构,形成淀粉样蛋白样纤维。证据表明,在此转化过程中形成的α -Syn聚集体的中间物种是细胞死亡的原因。然而,与α -Syn聚集有关的分子事件及其与疾病发作和进展的关系尚未完全阐明。此外,在各种突触核力病中观察到的临床和病理异质性。液态液相分离(LLP)和凝结物的形成已被提议作为可能是α -Syn病理学的替代机制,并有助于在突触核生石病中看到的异质性。本综述着重于细胞环境在α -Syn构象重排中的作用,这可能导致病理学和存在不同毒性模式的不同α -Syn构象应变。讨论将包括细胞应激,异常LLP形成以及LLP在α -Syn病理学中的潜在作用。
1,John J. 1,1月1日,西蒙1,西蒙,CIM 1,克里山2,罗伯特·瑞斯4*,桑德胡5 5 **,丹妮卡·B·斯坦尼莫维奇5 ***,塞尔吉奥·帕勃罗·萨迪2,ABL Bio,Inc。2。赛诺菲3。南加州大学4。加利福尼亚大学圣地亚哥大学5。******各自的公司和页面的年龄。他们有股权。赛诺菲和赛诺菲。摘要。病人。这种方法不仅必须证明对α -Syn聚集体的靶向选择性,而且还必须实现适当的大脑暴露以具有所需的治疗作用。在这里,我们提供了用于治疗突触核苷的下一代抗体的临床前数据。SAR446159(ABL301)是由α-Syn结合免疫球蛋白(IgG)和工程胰岛素类似生长因子受体1(IGF1R)结合单链变量片段(SCFV)组成的双特异性抗体(IGG),可作为Blbb构成抗血小板。SAR446159与α -Syn聚集体紧密结合,并在体外和体内防止其播种能力。与SAR446159孵育降低了神经元中的α -Syn预纤维(PFF)摄取,并促进了小胶质细胞的吸收和清除率。在纹状体中注射α -Syn PFF的野生型小鼠中,用SAR446159处理
我们开发了一种将CRISPR -CAS遗传工具引入细菌的不同方法。在细菌结合期间,松弛酶通过IV型分泌系统共同连接到DNA上。通过将CAS蛋白与弛豫酶融合在一起,我们观察到受体细胞中的功能性CAS活性,从而消除了这些细胞中核酸酶表达的需求。转移的DNA分子可以提供引导RNA和供体DNA,从而通过重组实现无缝的遗传修饰。我们还将松弛酶的融合到受体细胞中活性的基础编辑器。这些是迄今为止最大的蛋白质底物。此方法可以应用于任何受体细胞,尤其是野生 - 缺乏可用遗传工具的细菌菌株。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月13日。 https://doi.org/10.1101/2024.10.13.618101 doi:Biorxiv Preprint
如果能够可靠地生产有效的 RNP-LNP 复合物,则脂质纳米颗粒 (LNP) 递送成簇的规律间隔的短回文重复 (CRISPR) 核糖核蛋白 (RNP) 可以实现高效、低毒和可扩展的体内基因组编辑。在这里,我们从嗜热地芽孢杆菌 (GeoCas9) 中设计了一种耐热的 Cas9,以生成 iGeoCas9 变体,与天然 GeoCas9 酶相比,该变体能够对细胞和器官进行 100 倍以上的基因组编辑。此外,iGeoCas9 RNP-LNP 复合物可编辑多种细胞类型,并在接受共同递送的单链 DNA 模板的细胞中诱导同源性定向修复。使用组织选择性 LNP 制剂,我们观察到在接受单次静脉注射 iGeoCas9 RNP-LNP 的报告小鼠的肝脏和肺中基因组编辑水平为 16 œ 37%。此外,与可生物降解的 LNP 复合的 iGeoCas9 RNP 可以编辑肺组织中致病的 SFTPC 基因,平均效率为 19%,这比之前使用病毒或非病毒递送策略观察到的基因组编辑水平有了很大的提高。这些结果表明,热稳定性 Cas9 RNP-LNP 复合物可以扩大基因组编辑的治疗潜力。
摘要 本研究利用CRISPR/Cas9核糖核蛋白(RNP)复合体系统对康乃馨乙烯(ET)生物合成基因[1-氨基环丙烷-1-羧酸(ACC)合成酶1(ACS1)和ACC氧化酶1(ACO1)]进行编辑。首先,验证靶基因(ACS1和ACO1)的保守区域,以生成不同的单向导RNA(sgRNA),然后使用体外切割试验验证sgRNA特异性切割靶基因的能力。体外切割试验表明,sgRNA在切割各自的靶区域方面具有很高的效率。将sgRNA:Cas9复合物直接递送到康乃馨原生质体中,并对原生质体中的靶基因进行深度测序。结果表明,sgRNA 适用于编辑 ET 生物合成基因,因为 ACO1 的突变频率范围为 8.8% 至 10.8%,ACS1 的突变频率范围为 0.2–58.5%。在对用 sgRNA:Cas9 转化的原生质体产生的愈伤组织中的目标基因进行测序时,在 ACO1 中发现了不同的 indel 模式(+ 1、- 1 和 - 8 bp),在 ACS1 中发现了不同的 indel 模式(- 1、+ 1 和 + 11)。这项研究强调了 CRISPR/Cas9 RNP 复合物系统在促进康乃馨 ET 生物合成的精确基因编辑方面的潜在应用。关键词 愈伤组织,CRISPR/Cas9,乙烯生物合成基因,Indel 模式,体外裂解,原生质体