核爆炸装置 (NED) 是近地天体 (NEO) 减缓的三个最成熟的概念之一,另外两个是动能撞击器 (KI) 和重力牵引器 (GT) [17]。根据美国国家近地天体防备战略和行动计划 [18],这三个概念以及一些不太成熟但具有潜在前景的概念目前正处于不同的研究和开发阶段。在这里,我们讨论了 NED 如何用于行星防御任务,并描述了在哪些情况下可能需要或优先使用 NED 进行行星防御。以下小节中引用的分析和结果基于对现有 NED 的建模,不假设任何新的 NED 开发。无需新的 NED 设计来应对最可能的未来 NEO 威胁,这是迄今为止关于该主题的研究的一个重要发现 [4]。本研究的另一个重要假设是,NED 是根据需要从地球发射并随后直接前往目标 NEO 而提供的。目前尚未对在太空或地面上预先部署 NED 进行建模,目前的研究也未表明在太空预先部署 NED 会改善行星防御任务的性能。事实上,由于缺乏用于行星防御目的的首选分级轨道,在太空预先部署 NED 可能会降低任务的整体性能,包括弹道飞行时间、运送到目标的质量和其他性能指标。
2021 年 4 月 9 日——简易核装置或放射性散布装置。(3) ... 联合出版物 3-11,“化学、生物、放射和核操作”。
《响应和恢复联邦跨部门行动计划》本附件的发布特此废除以下文件:《1996 年联邦放射应急响应计划》;《1 简易核装置作战概念计划(第 10 版)》,2009 年;以及《响应和恢复联邦跨部门行动计划》的《核/放射事件附件》,2016 年。
1.0 引言引信装置是用于“安全”“武装”和引爆爆炸性军用弹药(如导弹、地雷、爆破炸药、尺寸从 20 毫米到 16 英寸的爆炸性炮弹、非制导炸弹和各种子弹药)的装置。二战期间为 5 英寸海军防空射弹开发的早期电子引信使用 CW 多普勒 RF 技术在射弹最接近目标飞机时引爆射弹。更先进的电子设备用于引爆核装置。今天,大多数导弹和炸弹都使用不同复杂程度的电子引信。目前电子引信使用量的最大增长将发生在美国陆军应用中。直到最近,大多数大口径射弹引信都是机械装置。陆军的 M-762 计划为快速转换为电子装置奠定了基础引信。引信和安全的主要军事规范是 MIL-STD-1316。其主要特点是推力引信安全。引信安全的主要原则是必须有两个独立的机制或过程参与引信的启动。稍后将提供示例。
一场可以改变战略思想的革命正在进行。但苦乐参半的事实是,这场革命与冷战结束和斯通沙漠行动成功后即将出现的“新世界秩序”关系不大。真正的革命在于科学,其影响可能会改变战争和战略思想的模式。然而,我们的注意力集中在短期的国际改组上。我们专注于短暂的事物,而忽略了时代性。科学进步正在推动我们超越简单的牛顿概念,进入混沌理论和自组织临界性的奇异世界。这些新颖的科学研究方向仅在过去三十年中出现。简而言之,它们假定结构和稳定性隐藏在看似随机的非线性过程中。由于科学革命在过去如此改变了冲突,美国战略家必须了解进展中的变化。这很重要的一个原因是技术:新原理产生了新类型的武器,就像基本量子理论和狭义相对论引领了核装置一样。理解科学变化的第二个更根本的原因是,我们对现实的看法建立在科学范式之上。世界在我们看来往往是一个错综复杂、混乱不堪的地方,我们寻找能够理解这一切的框架。这些框架绝大多数都来自物理科学,比如 18 世纪的观点认为
情况说明书 什么是碘化钾 (KI) 以及它有何用途? 碘化钾是一种化合物(盐),可用于在核电站或核装置发生放射性紧急情况时保护甲状腺免受伤害。它为片剂形式。除甲状腺外,KI 不能保护身体任何部位免受辐射;也不能保护身体免受放射性碘以外的任何放射性物质的伤害。 什么是甲状腺?为何碘对甲状腺很重要? 甲状腺是位于人体颈部的一个小腺体。其主要功能是制造、储存和释放甲状腺激素,甲状腺激素可调节身体的新陈代谢(新陈代谢是身体产生能量的方式)。甲状腺需要碘来制造甲状腺激素。人体中的大部分碘来自食物,例如加碘食盐、乳制品、富含碘的土壤中生长的植物(沿海地区)、海鲜和复合维生素。放射性/核事故会如何损害甲状腺?如果核电站出现紧急情况,可能会有大量放射性碘释放到空气中。甲状腺会利用人体血液中的所有碘,但它无法区分放射性和非放射性碘。甲状腺会迅速吸收放射性碘,就像吸收人体饮食中的常规碘一样。放射性碘会释放能量(辐射),高浓度时会损害甲状腺细胞。对于某些人,尤其是幼儿,这种损害会在接触几年后导致甲状腺癌或其他甲状腺疾病。碘化钾如何保护甲状腺?由于甲状腺会迅速吸收体内的任何碘,因此人们可能需要在核事故发生后立即服用碘化钾药片,因为核事故会将放射性碘释放到空气中。碘化钾药片中稳定的非放射性碘会充斥甲状腺,使放射性碘没有空间被吸收。有害的放射性碘随后会通过肾脏无害地从体内排出。
2009 财年国家核安全局 (NNSA) 的拨款请求为 91 亿美元,比 2008 财年拨款减少 3500 万美元或 0.4%。在武器活动拨款中,国防计划请求 52 亿美元,比 2008 财年拨款增加 1.25 亿美元,约 2.4%,并将工作重点重新放在支持库存和复杂改造上。在请求的水平内,NNSA 将继续开展所有计划,以满足库存、库存监测、年度评估和寿命延长计划的迫切需求;将继续推进复杂改造,并提高弹头拆除率。武器拆除活动增加了 1340 万美元,约 26%,反映了对拆除退役冷战弹头的关注度增加。此外,还要求拨款 1000 万美元,使可靠替代弹头设计更加成熟。要求用于活动的资金比 2008 财年拨款减少了 13%,这反映了主要建设项目的完成,包括国家点火装置和国家实验室的微系统和工程科学应用,以及坑制造和认证活动的结束。技术基地和设施的准备程度比 2008 财年拨款增加了约 5%,主要是在建设账户中,以满足项目基线资金需求。武器活动拨款的其他增长领域包括网络安全和核武器事件响应。网络安全活动资金增加 2220 万美元,约 22%,用于支持一项为期五年的重大努力的下一步,重点是整个 NNSA 综合设施的振兴、认证、认可和培训。核武器事件响应计划的资金增加 6330 万美元,增长 40%,用于支持我们更加关注核反恐和击败简易核装置。资金增加源于两项职能转移和 2008 财年启动的两项国家安全计划的资金增加。该请求提出了
序言 本文件是 EPA 辐射和室内空气办公室 (ORIA) 的几项举措之一,旨在为放射分析实验室提供指导,以支持 EPA 在放射性或核事故后的响应和恢复行动。本指南研究了在正常运行期间和放射性事故后通过伽马射线光谱法对样品的分析。本文件提供的样品筛选和分析指南应有助于那些在应对放射性或核事故时面临大量此类样品挑战的联邦、州和商业放射分析实验室。本文件适用于不同类型的事件:放射性运输事故、放射性散布装置 (RDD 或“脏弹”)、核电站紧急状态的泄漏、简易核装置 (IND) 的爆炸、其他潜在的放射性泄漏以及正常的实验室操作。这些样品将被不同程度的放射性核素污染,并代表不同成分的基质。国家和地区响应小组以及放射实验室的提前规划对于确保不间断地处理大量放射性样品以及快速周转和报告符合与保护人类健康和环境相关的数据质量目标的结果至关重要。正如《国家响应框架》和《核/放射事件附件》中所述,EPA 的职责包括响应和恢复行动,以检测和识别放射性物质以及协调联邦放射监测和评估活动。关于推荐的放射分析实践的详细指导可以在《多机构放射实验室分析协议手册》(MARLAP)中找到,该手册根据项目特定要求为项目规划人员、管理人员和放射分析人员提供详细的放射分析指导(www.epa.gov/radiation/marlap/links.html)。熟悉 MARLAP 的第 2、3、14、15 和 18-20 章将对本指南的用户大有裨益。本文件是一系列文件之一,旨在向放射分析实验室人员、事故指挥官(及其指定人员)和其他现场响应人员介绍实验室关键操作注意事项和可能的放射分析要求、决策路径以及放射或核事故后采集的样本分析的默认数据质量和测量质量目标。目前完成的文件包括: 全国性重大事故放射实验室样本分析指南 - 水中放射性核素(EPA 402-R-07-007,2008 年 1 月) 全国性重大事故放射实验室样本分析指南 - 空气中的放射性核素(EPA 402-R-09-007, 国家重大事件放射实验室样品筛选分析指南 (EPA 402-R-09-008,2009 年 6 月) 参与事件响应活动的放射实验室所使用的资格方法的方法验证指南 (EPA 402-R-09-006,2009 年 6 月) 实验室指南 – 放射或核事件响应核心操作的识别、准备和实施 (EPA 402-R-10-002,2010 年 6 月)
桑迪亚国家实验室(Sandia National Laboratories)始于1945年,是Z部的Z部,是洛斯阿拉莫斯(Los Alamos)的军械设计,测试和装配部门。该师搬到了阿尔伯克基附近的桑迪亚基地,进入飞机场并与军队合作。最终,增长促使与Los Alamos分离。1949年11月1日,西亚电气公司的全资子公司桑迪亚公司开始管理桑迪亚。Sandia是1979年立法的国家实验室。在1993年,桑迪亚公司成为马丁·玛丽埃塔(后来,洛克希德·马丁)公司。2017年5月1日,霍尼韦尔国际公司(Honeywell International,Inc.1949鉴于库存监视的持续责任。直到1960年,在美国的核武器存储站点提供了监视人员。1950年代为木炸弹概念开发了低维护成分,其中武器可以在库存中准备好多年,而几乎没有维护。1956年在加利福尼亚州利弗莫尔开设了第二个实验室。1958年抗击组件和降落伞系统启用了核弹的交付。1960 Tonopah测试范围取代了Salton Sea Test Base作为Sandia的永久测试范围。1960年地球设计工作中出现了terradyanics的科学。 1960年提出了宽松的行动链接,以防止未经授权使用核武器。 1960年层流流动室设计。 1962 Strypi火箭发射了为高空Dominic核试验系列携带核装置。1960年地球设计工作中出现了terradyanics的科学。1960年提出了宽松的行动链接,以防止未经授权使用核武器。1960年层流流动室设计。1962 Strypi火箭发射了为高空Dominic核试验系列携带核装置。1962年开始了B61设计程序,以创建灵活的轻质战术热核武器。1962年开始在与重新进入的车辆完全集成的独立目标弹头上工作;导致了波塞冬3个重新进入的海军合同。1963年的桑迪亚数据处理,逻辑和电力系统上的Vela卫星发射以检测核爆炸。1966年帮助定位了在西班牙帕洛马雷斯(Palomares)的飞机碰撞中损失的核弹。在1968年建立了一个独立的安全小组来评估武器设计。1970年推出了用于运输核武器的安全拖车;后来为核材料设计并测试了抗事故容器。1972年开始研究和培训反恐。 1973年开始了有关增强化石燃料恢复,太阳能,风能,光伏和融合的研究。 1974年被任命为废物隔离试点工厂的技术顾问; Wipp于1999年收到了其第一次运输的transuranic废物。 1980年,该国战略石油保护区被任命为岩土技术顾问。 1981年燃烧研究机构在Sandia/CA开业;全球研究人员可供选择。 1983年有助于评估对策和战略防御计划的脆弱性。 1983年发表了有关紧张层超晶格的研究,这些材料允许科学家量身定制半导体。 1984将69位数字的Mersenne编号置于测试和挑战武器安全法规的努力中。 1991年沙漠风暴中使用的Sandia-Advanced合成孔径雷达(SAR)。 1993收到了中子发电机生产的任务分配。1972年开始研究和培训反恐。1973年开始了有关增强化石燃料恢复,太阳能,风能,光伏和融合的研究。1974年被任命为废物隔离试点工厂的技术顾问; Wipp于1999年收到了其第一次运输的transuranic废物。1980年,该国战略石油保护区被任命为岩土技术顾问。 1981年燃烧研究机构在Sandia/CA开业;全球研究人员可供选择。 1983年有助于评估对策和战略防御计划的脆弱性。 1983年发表了有关紧张层超晶格的研究,这些材料允许科学家量身定制半导体。 1984将69位数字的Mersenne编号置于测试和挑战武器安全法规的努力中。 1991年沙漠风暴中使用的Sandia-Advanced合成孔径雷达(SAR)。 1993收到了中子发电机生产的任务分配。1980年,该国战略石油保护区被任命为岩土技术顾问。1981年燃烧研究机构在Sandia/CA开业;全球研究人员可供选择。 1983年有助于评估对策和战略防御计划的脆弱性。 1983年发表了有关紧张层超晶格的研究,这些材料允许科学家量身定制半导体。 1984将69位数字的Mersenne编号置于测试和挑战武器安全法规的努力中。 1991年沙漠风暴中使用的Sandia-Advanced合成孔径雷达(SAR)。 1993收到了中子发电机生产的任务分配。1981年燃烧研究机构在Sandia/CA开业;全球研究人员可供选择。1983年有助于评估对策和战略防御计划的脆弱性。1983年发表了有关紧张层超晶格的研究,这些材料允许科学家量身定制半导体。 1984将69位数字的Mersenne编号置于测试和挑战武器安全法规的努力中。 1991年沙漠风暴中使用的Sandia-Advanced合成孔径雷达(SAR)。 1993收到了中子发电机生产的任务分配。1983年发表了有关紧张层超晶格的研究,这些材料允许科学家量身定制半导体。1984将69位数字的Mersenne编号置于测试和挑战武器安全法规的努力中。1991年沙漠风暴中使用的Sandia-Advanced合成孔径雷达(SAR)。1993收到了中子发电机生产的任务分配。1994年合作监测中心开始主持来自世界各地的武器控制专家。1995响应基于科学的库存管理计划,增强了测试和计算基础架构。1996 Sandia/Intel Asci红色机器达到1.06 TERAFLOPS;它最终达到了3.2 teraflops的峰值,并且一直是世界上最快的计算机。