摘要绿色能源是由于气候变化和生态学而导致的一个苛刻的问题。绿色能源氢在替代能源领域变得重要。为此探索了许多方法,但大多数方法都利用其他能源来产生氢。因此,这些方法在工业层面不可接受,也不是可以接受的。阳光和核辐射作为氢分裂水的游离或低成本能源。这些方法在近期很重要。因此,试图探索氢生产的直接辐射水分方法中的最新更新。本文讨论了使用可见辐射和紫外辐射在太阳光谱中免费获得的,通过使用可见辐射和紫外线辐射在绿色氢生产中取得的进步。此外,还审查了通过伽马辐射(低成本能源)分裂的水。还努力描述光和伽马介导的水分裂中的水分机制。除了这些外,还讨论了挑战和未来的观点,以使本文对进一步的高级研究有用。
本文介绍了合成,晶体生长,检测器制造,辐射硬化研究,MCNP建模以及二依依氏锂或Inse 2的表征。这个新开发的室温热中子检测器具有半导体和闪烁的特性,适用于中子检测应用。liinse 2是从元素li开始合成的,由于Li的高反应性,分为两个步骤。使用垂直Bridgman方法生长了一个含Iinse 2的单晶。使用光吸收测量值发现室温带隙为2.8 eV。散装电阻率。光电导率测量2晶片的光电识别在445 nm左右的光电流中。核辐射探测器是用单晶晶片制成的,并测量了各种偏见的α颗粒的响应。估计了千篇一律的产物。γ辐照研究的吸收剂量范围为0.2126至21,262 Gy。在每次辐照后都进行了两个晶圆的表征。γ辐射产生的光产率降低,这转化为alpha检测光谱质心的较低通道数。它也显示出第一次辐照后的衰减时间大大减少。这些是对这种材料进行伽马辐射硬化的第一批研究。
质量,电荷,能量,物理。基本原子和核,简介L. S.,放射性,核辐射,基本数学,数学和物理学的综述,Alpha,beta衰减,β衰减,上调,电子捕获,电子捕获,X射线,X和内部转换,活动,活动和衰减方程,半消旋,放射性系列和放射性均衡,相互互动,相互互动,相互互动,相互互动,相互互动,相互互动,相互互动,相互互动,相互互动, LET, Penetrating power, Range and LET, Photon interaction, Photoelectric effect, Compton scattering, Pair production, Coefficient linear attenuation, Neutron interaction, Properties, Elastic, inelastic scattering, Absorption reactions, Fission and activation, Quantities and units, Exposure, Absorbed dose and dose rate, Kerma, Radiation weight factors, ICRP60, Dose equivalent, Effective, Committed dose, Relationship between quantities, Weight factors for tissues, Incorporation of radioactive material, Radioprotection parameters, The inverse square law of distance, Radiation detectors, Nuclear instrumentation and characteristics of gas detectors and Region of operation: CI, proportional and G-M, Portable alpha detectors and scintillation detectors, Gamma detectors, x-rays, neutron detectors, Sources of natural / artificial radiation, Cosmic radiation,医疗保健展览,辐射,核爆炸。练习。最终评估。
近几年来,用于核辐射和粒子的半导体探测器发展迅速。虽然这些发展已在大量出版物中有所记载,但以入门教科书的形式收集这些信息似乎很有用,该教科书还包含最新发展背后的基本概念。本书旨在作为学术教学的基础,以及所有从事半导体探测器开发或使用的人员的指南和参考。半导体探测器现在用于科学和技术领域的众多领域,包括核物理、基本粒子物理、光学和 X 射线天文学、医学和材料测试 - 而且应用数量不断增长。与半导体应用密切相关且由半导体应用引发的是用于信号读出的低噪声低功耗集成电子器件的发展。半导体探测器的成功归功于其他类型探测器所不具备的几种独特特性。这些特性的例子有:极高精度的位置测量与高读出速度的结合;直接以电子形式提供信号;同时精确测量能量和位置;以及在公共基片上集成探测器和读出电子器件的可能性。值得注意的是,所有这些发展都源于为基础研究(这里是基本粒子物理学)提供调查工具的需要,而且这些发展的成果现在也造福于其他科学技术领域。在介绍材料时,重点介绍了探测中的物理原理和设备结构,而具体应用和探测器系统则放在一边。大部分内容是关于读出电子器件和探测器放大器系统中的噪声考虑。虽然不涉及探测器系统本身,但本文讨论了目前计划在新建粒子对撞机的严酷辐射环境中应用数万个探测器对探测器性能提出的要求。生产如此大量的探测器需要一种简单的设计,既经济又能应对辐射引起的材料性质的剧烈变化。因此,辐射损伤和设备稳定性领域也得到了广泛的覆盖。
尊敬的克里斯托弗·A·雷伊 局长 华盛顿哥伦比亚特区 宾夕法尼亚大道西北 935 号 邮编 20535 尊敬的雷伊局长, 我想提请您注意,在我履行海外公务期间,有人试图干涉我的选举,并威胁一名美国政府官员。我正式请求调查这些行为是否由乌克兰总统办公室成员或乌克兰的其他外国行为者密谋和指挥。如您所知,根据美国《宪法》第 28 章的定义,此类行为可能使一个国家被列入支持恐怖主义的国家名单。 您可能知道,基于我在实地的观察、我军人在执行 CODEL 期间提出的担忧、没有证据表明美国的援助迅速有效地送达乌克兰受灾最严重的地区和前线,以及拜登政府不愿有效地向国会汇报,我今年夏天向拜登总统公开致信,要求国会汇报情况并加强监督和问责。乌克兰人民和乌克兰士兵正在为民主价值观和自由而进行本世纪残酷而英勇的战斗,我们必须确保我们的武器和资金确实落到正确的人手中。我对乌克兰总统办公室的激烈反应感到惊讶。泽连斯基总统的幕僚长、现任乌克兰事实上的总统安德烈·叶尔马克先生不但没有解决我们的监督问题,反而在几乎完全由政府控制的媒体上发起了一场大规模的诽谤运动,把我描绘成俄罗斯的合作者。他们通过完全控制的司法和检察系统威胁任何与我会面或想与我会面的人,对他们提出刑事指控,据称还指示他们的秘密警察 (SBU) 在我今年秋天正式访问乌克兰期间使用恐吓手段,等等。此外,他们还与一位非常可疑的 CNN 记者娜塔莎·伯特兰 (Natasha Bertrand) 合作,后者通过 Politico 和 MSNBC 传播特朗普-俄罗斯斯蒂尔档案骗局,并错误地声称亨特·拜登的笔记本电脑是“俄罗斯的虚假信息”,还与《新闻周刊》合作,根据我在竞选连任期间遇到的各种匿名消息来源撰写攻击我的文章。自战争开始以来,我们投入了大量的精力帮助乌克兰人民,带头争取国会和公众的支持;向拜登政府施压,要求其改善我们的安全援助、后勤、培训和战略,并重建我们在乌克兰的外交存在;向国际组织施压,要求其更好地协助黑海港口、人道主义援助、战争罪、撤离和核安全;与我们的盟友合作提供援助,战俘和能源安全;前往乌克兰前线了解当地情况,以便更好地协助乌克兰军方;冒着生命危险遭受核辐射、炮火、导弹和无人机的袭击,我对乌克兰总统办公室的行为感到震惊
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets L. Bottura(1), C. Accettura(1), A. Kolehmainen(1), J. Lorenzo Gomez(2), A. Portone(2), P. Testoni(2) (1) CERN, Geneva, Switzerland (2) Fusion for Energy (F4E), Barcelona,西班牙摘要MUON对撞机是被认为是高能物理学的下一步的选择之一。它面临许多挑战,并非最不重要的是超导磁铁技术。目标和捕获电磁阀是其中之一,大约18 m长的通道由轴向电磁磁铁组成,轴是20 t的1.2 m自由孔和峰场。其中一个主要问题来自核辐射环境,可能影响线圈的稳定操作,及其材料完整性。能量光子会导致较大的辐射热负荷,在冷质量中的几个kW的阶数,并沉积相当大的剂量,几十mgy。中子在10 -3 dpa的水平下造成物质损害。这些值处于超导线圈技术的当前限制。我们在这里描述了目标的概念设计并捕获了螺线管,重点是HTS电缆设计,这在很大程度上是受到麻省理工学院开发的毒蛇概念的启发。我们展示了如何解决特定于选择的HTS电缆的边缘和保护,冷却和机制。引言2021年欧洲粒子物理战略的更新已确定五个高优先级R&D主题将针对高能物理学的下一步[1]。比田间的μ子的回旋半径大得多,因此梁在通道中的绝热膨胀。所确定的主题之一[2]是Muon Collider(MC)的概念设计,该机器可以在能量前沿探索物理。MC可以在非常高能量的情况下提供点状颗粒的碰撞,因为可以在环中加速muon,而不会受到电子经历的同步辐射的严重限制。对于超过3 TEV的质量中心能量,MC可以为通向能量边界的高光度对撞机提供最紧凑,最有效的途径。然而,对高光度的需求面临着由于静止时期短暂的寿命(2.2μs)引起的技术挑战,以及难以生产带有较小散发体的臂线束的困难。应对这些挑战需要协作[3]来发展创新概念,尤其是在超导磁铁领域。[4]最苛刻的挑战之一,本文的重点之一是托管目标和捕获通道的螺线管,该通道产生了宇宙束。muons是由于正质和负亲的衰减而产生的,这些衰变是由短,高强度质子脉冲与固体靶标(例如碳棒)碰撞所产生的。PION生产目标插入稳态的高场螺线管中,其功能是捕获电荷的亲,并引导它们进入创建MUON的衰减通道。沿通道轴的磁场轮廓需要具有特定的形状,目标峰场为20 t,在通道出口的衰减约为1.5 t,总长度约为18 m。场的特征长度约为2.5 m,即
葡萄干化字母卷。21,编号6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。 伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。6,2024年6月,第6页。 459-473 Dy 2 O 3掺杂B 2 O 3 –Teo 2 –bao Glasses S. H. Farhan *,B。M. M. Al Dabbagh,H。Aboud Applied Sci。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。 具有不同组合物的玻璃样品是通过标准方法制备的。 样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。 XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。 缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。 分析了所获得的样品的光学特性。 e OPT值的下降导致玻璃的折射率(n)值更高。 但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。 进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。 使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。 这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。伊拉克伊拉克学院,伊拉克技术大学,伊拉克大学。具有不同组合物的玻璃样品是通过标准方法制备的。样品的组成为(50-X)B 2 O 3 –25Teo 2 –25bao-Xdy 2 O 3,X范围从0到1.25 mol%。XRD轮廓证实了样品是无定形的,因为没有观察到远程晶格布置。缺乏尖锐的线条和峰进一步证实了无定形样品的成功制备。分析了所获得的样品的光学特性。e OPT值的下降导致玻璃的折射率(n)值更高。但是,当Dy 2 O 3的浓度超过一定水平(0.75、1和1.25 mol%)时,由于E OPT值的增加,折射率(N)降低。进行了使用NAI(TL)检测器的实验测量,以确定辐射屏蔽参数(LAC和MAC),以及(HVL),(TVL)和(MFP)的镜头,对137 cs和60 COOTOPES发射的伽玛射线的玻璃杯,并在0.662、1.173、1.173和1.333上发出60 cosotopes。使用PHY-X/PSD软件程序将实验结果与理论计算进行比较时,观察到了良好的一致性。这表明制造的玻璃在光学领域的各种应用中具有很大的潜力,并且可以有效地屏蔽辐射。收到2024年3月2日; 2024年6月12日接受)关键字:光学和辐射屏蔽特性,吸收光谱拟合(ASF),辐射参数,光带隙,折射率1。介绍多年来,这些技术的进步无疑有助于人类在节省时间,精力和成本的同时完成众多任务的能力。但是,这种进步导致了对人类的健康危害。实际上,辐射的用途现在广泛用于各种目的,例如环境保护,增长促进,粮食生产,研究和医疗保健[1]。在各种应用中,例如伽马射线和X射线的医学成像或工业过程,选择合适的安全材料以保护有害辐射并确保辐射源的安全至关重要。[2]。尽管它们有许多缺点,但使用混凝土以屏蔽辐射的目的,各种低成本的常见实践。因为它们能够被塑造成不同的几何形状[3]。长时间暴露于核辐射会导致裂缝,降低密度[4]。除此之外,混凝土材料的强度可能会受到其中被困在其中的水量以及任何化学破坏构成重大挑战的影响,因为工人无法到达此类结构的内部。玻璃作为辐射屏蔽的可能材料,因为它们能够吸收γ射线和中子及其高可见性[5]。玻璃材料已被几位作者证明是有效的辐射罩。材料预防辐射的能力取决于几个因素,包括(LAC和MAC),原子数和电子密度,(MFP)等。准确评估这些参数至关重要。[6,7]。对最近文献的全面调查表明,玻璃的屏蔽和放射性特性一直是激烈调查的主题。El-Mallawany等人进行的一项研究; [8]专注于Tellurite Glass作为屏蔽的能力 *通讯作者: