计算RNA设计任务通常被提出为反问题,其中设计序列是基于采用单个所需的二级结构而不考虑3D几何和构象多样性的。我们介绍了Grnade,这是在3D RNA骨干上运行的G型RNA de标志管道,以设计明确解释结构和动力学的序列。在引擎盖下,Grnade是一个多状态图神经网络,它在一个或多个3D主干结构上生成候选RNA序列,在该结构中,碱的身份未知。在单态固定骨架上,来自Das等人鉴定的PDB的14个RNA结构的重新设计基准。[2010],与罗塞塔(Rosetta)相比,Grnade获得了更高的天然序列恢复率(平均为56%)(平均45%),与Rosetta报道的小时相比,要花一秒钟的时间才能产生设计。我们进一步证明了Grnade在用于结构柔性RNA的多状态设计的新基准上的实用性,以及对最近的RNA聚合酶核酶结构的回顾性分析中突变适应性景观的零摄像排名。
计算RNA设计任务通常被提出为反问题,其中设计序列是基于采用单个所需的二级结构而不考虑3D几何和构象多样性的。我们介绍了Grnade,这是在3D RNA骨干上运行的G型RNA de标志管道,以设计明确解释结构和动力学的序列。在引擎盖下,Grnade是一个多状态图神经网络,它在一个或多个3D主干结构上生成候选RNA序列,在该结构中,碱的身份未知。在单态固定骨架上,来自Das等人鉴定的PDB的14个RNA结构的重新设计基准。[2010],与罗塞塔(Rosetta)相比,Grnade获得了更高的天然序列恢复率(平均为56%)(平均45%),与Rosetta报道的小时相比,要花一秒钟的时间才能产生设计。我们进一步证明了Grnade在用于结构柔性RNA的多状态设计的新基准上的实用性,以及对最近的RNA聚合酶核酶结构的回顾性分析中突变适应性景观的零摄像排名。
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。
基因沉默涉及针对细胞中的特定 mRNA 序列,在翻译之前抑制基因表达。1,2 由于通过基因沉默抑制或调节某个基因的表达可以减弱癌细胞的侵袭、增殖和迁移,3,4 基因沉默作为各种癌症和疾病的新型治疗策略正在被越来越多地研究。常用于基因沉默的试剂包括小干扰 RNA、DNA 酶、核酶、微小 RNA 和反义寡核苷酸,其中 DNA 酶因其高度特异性和底物灵活性而被证明是一类很有前途的基于核酸的基因沉默试剂。5 DNA 酶是体外选择的催化核酸,可以催化各种反应,包括 DNA/RNA 连接、6 核酸切割、7 – 10 Diels – Alder 反应 11 和 DNA 磷酸化。 12,13 特别值得注意的是,DNAzymes 可以选择性地结合其底物 mRNA 序列,表现出与蛋白酶相当的催化活性,可在靶基因的翻译抑制过程中切割这些 mRNA。此外,DNAzymes 比其他基因沉默剂具有更好的稳定性,避免使用蛋白质进行催化活性,并且无毒无免疫原性,使其成为分子 mRNA 水平上特别合适的沉默剂。尽管具有这些优势,但它们在生物介质中的不稳定性、靶向递送和细胞摄取效率低
摘要糖基化(CDG)的人类先天性疾病的最常见原因是磷光合酶基因PMM2中的突变,它影响蛋白质N-连接的糖基化。酵母基因SEC53编码人类PMM2的同源物。我们进化了384个酵母,载有两个与人疾病相关的等位基因之一,SEC53-V238M和SEC53 -F126L或野生型SEC53。我们发现,1000代后,大多数种群弥补了与Sec53人疾病相关等位基因相关的慢增长表型。通过全基因组测序,我们确定了补偿性突变,包括已知的SEC53遗传相互作用。我们观察到其他基因的补偿性突变富集,其人类同源物与1型CDG相关,包括PGM1,该基因编码酵母中磷酸葡萄糖核酶的少量同工型。通过遗传重建,我们表明进化的PGM1突变是主要的,并且是特异性的遗传相互作用者,可恢复具有Sec53 -V238m等位基因的蛋白质糖基化和酵母的生长。最后,我们表征了纯化的PGM1突变蛋白的酶活性。我们发现,PGM1活性的减少(而不是消除)最好地补偿了与Sec53 -V238M等位基因相关的有害表型。广义,我们的结果证明了实验进化的力量,作为识别补偿与人类疾病相关等位基因的基因和途径的工具。
基因组编辑技术不仅提供了研究基本细胞系统功能的前所未有的机会,而且还可以改善几种临床应用的结果。在这篇综述中,我们分析了从基础研究和临床角度来调查免疫系统的各种基因编辑技术。我们讨论了可编程核酸酶开发的最新进展,例如锌 - 纤维核酸酶(ZFN),转录激活剂样效应核酸酶(TALEN)和定期间隔的短距离短palindromic重复(CRISPR) - cas-cas相关核酶。我们还讨论了可编程核酸酶及其衍生试剂的使用,例如通过基因破坏,插入和重写T细胞和其他免疫成分的基础编辑工具来设计免疫细胞,例如天然杀手(NKS)和造血干细胞和祖细胞(HSPCS)。此外,关于嵌合抗原受体(CAR),我们描述了不同的基因编辑工具如何使健康的供体细胞可用于CAR T疗法,而不是自体细胞,而无需危害移植物抗旋转疾病或拒绝,从而导致收养细胞治疗成本降低,并立即治疗患者。我们特别注意将治疗性转基因(例如汽车)的递送到内源性基因座,以防止附带损害并提高治疗有效性。最后,我们审查了包括免疫系统重新利用在内的创新创新,这些创新促进了临床癌症免疫疗法框架内的安全和有效的基因组手术。
基因组编辑技术为多年生黑麦草(一种全球重要的牧草和草坪草种)的遗传改良提供了强有力的工具。关于多年生黑麦草基因编辑的唯一出版物使用基因枪进行植物转化,并使用基于双启动子的 CRISPR/Cas9 系统进行编辑。然而,它们的编辑效率很低(5.9% 或只产生了一株基因编辑植物)。为了测试玉米泛素 1 (ZmUbi1) 启动子在多年生黑麦草基因编辑中的适用性,我们制作了 ZmUbi1 启动子:RUBY 转基因植物。我们观察到 ZmUbi1 启动子在芽再生之前的愈伤组织中活跃,这表明该启动子适用于多年生黑麦草中的 Cas9 和 sgRNA 表达,以高效生产双等位基因突变植物。然后,我们使用 ZmUbi1 启动子来控制多年生黑麦草中的 Cas9 和 sgRNA 表达。Cas9 和 sgRNA 序列之间的核酶切割靶位点允许在转录后产生功能性 Cas9 mRNA 和 sgRNA。使用农杆菌进行遗传转化,我们观察到在多年生黑麦草中编辑 PHYTOENE DESATURASE 基因的效率为 29%。DNA 测序分析表明,大多数 pds 植物含有双等位基因突变。这些结果表明,由 ZmUbi1 启动子控制的单个 Cas9 和 sgRNA 转录单元的表达为产生多年生黑麦草的双等位基因突变体提供了一种高效的系统,并且也适用于其他相关草种。
计算RNA设计任务通常是作为反问题提出的,其中设计是基于采用单个所需的二级结构,考虑到3D构象多样性。我们介绍了Grnade,这是在3D RNA骨架上运行的G型RNA DE标志管道,以设计出解释结构和动力学的序列。GRNADE使用多状态图neu-ral网络和自回归解码来生成候选RNA序列,该候选RNA序列在一个或多个3D骨干结构上,在一个或多个碱的身份未知。在单态固定骨架上,来自Das等人鉴定的PDB的14个RNA结构的重新设计基准。(2010年),与罗塞塔(Rosetta)相比,Grnade获得了更高的天然序列恢复率(平均为56%)(平均45%),与Rosetta报告的小时相比,要花一秒钟的时间才能产生设计。我们进一步证明了Grnade在用于结构柔性RNA的多状态设计基准上的实用性,以及对最近的核酶的回顾性分析,突变适应性景观的零摄像排名。对10种不同结构化RNA骨架的实验性湿实验室验证发现,在设计伪后的RNA结构时,Grnade的成功率为50%,对于Rosetta而言,超过35%的增长率超过35%。开源代码和教程可在以下网址找到:github.com/chaitjo/ geometric-rna-design
culex quinquefasciatus说是在世界的热带和亚热带地区分布的蚊子。这是一种夜间活性的,机会性的血液源,媒介是许多动物和人类疾病,包括西尼罗河病毒和禽类疟疾。当前向量控制方法(例如物理/化学)越来越无效;杀虫剂的使用还对人类和生态系统健康构成危害。基因组编辑的进步允许开发遗传昆虫控制方法,这些方法是特异性物种特异性的,从理论上讲,非常有效。crispr/cas9是一种细菌衍生的可编程基因编辑工具,可在一系列物种中起作用。我们描述了Quinquefasciatus中同源性修复的第一个成功的种系基因基因概括。使用CRISPR/CAS9,我们将编码荧光蛋白荧光团(HR5/IE1 -DSRED,CQ7SK -SGRNA)编码的SGRNA表达盒和标记基因集成到kynurenine 3 − 3-单核酶(KMO)基因中。我们达到的最小转化率为2.8%,类似于其他蚊子物种的速率。确定了预期基因座的精确敲门in。插入纯合子在早期幼虫中表现出白眼表型,并且通过化合物表现出隐性致命表型。这项工作为工程C. Quinquefasciatus提供了一种有效的方法,为该向量开发遗传控制工具提供了一种新工具。
脂蛋白血症。前列腺素代谢 - COX 和 LOX 途径。脂质累积病和脂肪肝。牛奶脂质:分类和物理特性。自氧化、自氧化的副产物、影响因素、预防和测量;抗氧化剂 - 酶和非酶抗氧化剂。 第三单元:碳水化合物、矿物质和维生素 碳水化合物:不同碳水化合物的分类和特性。纤维素、糖原、半纤维素和果胶。葡聚糖和麦芽葡聚糖的生产。醛糖和酮糖。差向异构体。乳糖:存在、异构体、分子结构。牛奶寡糖、结构、技术方面和健康促进方面。糖酵解和糖异生概述 - 调节。柠檬酸循环和调节。戊糖磷酸途径和糖醛酸途径。糖原代谢和调节。糖原累积病。半乳糖血症。果糖不耐症和果糖尿症。乙醛酸循环。科里循环。光合作用——光反应、循环和非循环光合磷酸化。暗反应——卡尔文循环。矿物质:主要矿物质和次要矿物质。水溶性维生素:硫胺素;核黄素;烟酸;泛酸;吡哆醇;生物素;叶酸和氰钴胺素。脂溶性维生素——维生素 A 和 D。第四单元:酶酶——分类和一般特性。pH、温度和底物浓度的影响。酶抑制——竞争性、非竞争性和非竞争性抑制剂的影响。辅酶和辅因子。酶的调节——反馈抑制和共价修饰。抗体酶、核酶、DNA 酶。固定化酶——固定化方法、应用。参考 T4 溶菌酶的酶工程。酶电极。工业和