免责声明:在法律允许的范围内,赛默飞世尔科技公司和/或其附属公司不对与本文件有关或由本文件引起的(包括您对其的使用)的特殊、偶然、间接、惩罚性、多重或后果性损害承担责任。
摘要:纳米封装和结合是药物递送的主要策略。纳米粒子有助于提高封装和靶向效率,从而优化治疗效果。通过纳米粒子技术,替换有缺陷的基因或将新基因递送到患者的基因组中已成为可能。装载有遗传物质的脂质纳米粒子 (LNP) 旨在递送到特定的靶位以实现基因治疗。脂质外壳保护脆弱的遗传物质免于降解,然后成功地将有效载荷释放到细胞内,在那里它可以整合到患者的基因组中并随后表达感兴趣的蛋白质。本综述重点介绍了 LNP 和纳米制药技术的开发,以提高基因治疗的效力、降低毒性、靶向特定细胞和释放遗传物质以实现治疗效果。此外,我们还讨论了制备技术、封装效率以及结合对 LNP 递送核酸物质功效的影响。
在本文中,我们描述了一种基于我们之前开发的光子谐振吸收显微镜 (PRAM) 的生物传感仪器,该仪器结合了自动对焦、金纳米粒子 (AuNP) 积累的数字表示以及收集 AuNP 附着和脱离光子晶体 (PC) 表面的时间序列图像序列的能力。这些组合功能用于在生物分子分析过程中完全自动化 PRAM 图像收集,从而能够平铺 PRAM 图像以提供毫米级视野。该仪器还可以收集 PRAM“电影”,从而实现数字展示和动态计数 AuNP 到达和离开 PC 表面时的情况。我们在两种生物分子分析中利用这些功能来检测传统 AuNP 标记夹层格式的蛋白质生物标志物。利用测定过程中 AuNP 附着和分离事件的动态计数,我们提出了一种 10 分钟、室温、无酶方法检测低至 1 aM 的 microRNA-375 (miRNA- 375) 的方法,同时揭示了生物分子相互作用的结合率和解离率的特征。我们的仪器可能在多路复用即时诊断测试中得到广泛应用,并可作为以单分子分辨率定量表征生物分子结合动力学的通用工具。
FEP 医疗政策手册中包含的政策旨在协助管理合同福利,并不构成医疗建议。它们并非旨在取代或替代执业医师或其他医疗保健专业人员在治疗个人会员时做出的独立医疗判断。蓝十字蓝盾协会无意通过 FEP 医疗政策手册或任何特定医疗政策来推荐、提倡、鼓励或阻止任何特定医疗技术。与医疗技术相关的医疗决定应由会员/患者在咨询其医疗保健提供者后严格做出。某项服务或供应在医疗上是必需的这一结论并不构成蓝十字蓝盾服务福利计划为特定会员承保(或支付)此项服务或供应的陈述或保证。
数字核酸记忆(DNAM)利用DNA的非挥发性,长期数据存储的DNA的特殊信息密度,稳定性和能源效率,非常适合档案目的。通过使用DNA折纸,DNAN创建了一个信息矩阵,其中荧光单链DNA(SSDNA)链结合以表示二进制1和0,从而革新了数据存储和读取的方式。使DNAM适用于广泛使用,开发了提高SSDNA PSCAF生产的有效方法是必不可少的。
Andrea Barison博士是PISA(意大利)Fondazione CNR/Arimate toke the Arigane the Arimane顾问心脏病专家。他于2005年毕业于比萨大学和Scuola Superiore Sant'anna,在2009年在皮萨大学的心脏,胸腔和血管系专门从事心脏病学,并于2013年获得了Scuola Superora Superemora Sant'anna的翻译医学博士学位。 他的临床和研究活动包括心脏病学和心血管成像,特别关注心肌病和心脏磁共振。 自2018年以来,他一直是Scuola Superiore Sant'anna(意大利PISA)的“健康科学”跨学科中心的会员研究员,也是博士学位课程“健康科学,技术和管理”的教职员工。他于2005年毕业于比萨大学和Scuola Superiore Sant'anna,在2009年在皮萨大学的心脏,胸腔和血管系专门从事心脏病学,并于2013年获得了Scuola Superora Superemora Sant'anna的翻译医学博士学位。他的临床和研究活动包括心脏病学和心血管成像,特别关注心肌病和心脏磁共振。自2018年以来,他一直是Scuola Superiore Sant'anna(意大利PISA)的“健康科学”跨学科中心的会员研究员,也是博士学位课程“健康科学,技术和管理”的教职员工。
安德烈·齐格勒(AndréZiegler)是罗氏诊断国际(Roche Diagnostics International)心血管疾病的全球临床领导者。他在巴塞尔大学和日内瓦大学(瑞士)学习了药房。他拥有巴塞尔大学的心脏代谢博士学位。他曾在波士顿大学医学院和巴塞尔大学分子生物学研究所(Biozentrum)担任博士后研究员,并曾使用各种临床方法(例如心脏MRI,临床质谱法),研究所(巴塞尔大学医院,制药研究所)和几个诊断和制药行业。在罗氏(Roche)中,他负责用于心脏解决方案的全球注册和所有新心脏生物标志物的临床开发计划的临床研究(例如心力衰竭,房颤,冠状动脉疾病)和仪器(例如心脏的护理溶液)。安德烈(André)坚信,在过去20年中,通过个性化医疗保健的肿瘤学进步也可以通过研究合作伙伴的更紧密合作,更好的治疗分层和对新生物目标的识别来转化为心脏病学。研究的跨学科合作一直是他活动的主要重点。他为几个FP7/Horizon 2020/欧洲财团,北美学术联盟做出了贡献,并与> 10家制药公司和全球临床化学协会启动了诊断合作(例如ifcc)。Roche Diagnostics在所有市场领域都处于全球活动,从临床研究和临床实验室系统到患者自我监控。最近,他将罗氏的职责扩大到了所有临床活动,并在急性护理医学,凝结和血液学方面的诊断解决方案。在CRT中,安德烈(André
2。核酸是Friedrich Miescher于1871年发现的最大,最复杂的有机分子。它们是所有负责存储,传输和翻译遗传信息的细胞中发现的大分子。3。有两种类型的核酸:核糖核酸(RNA)和脱氧核糖核酸核酸(DNA)。DNA是用于遗传信息,控制RNA合成的永久存储位置,并根据其氮基碱序列确定蛋白质的发育。4。通过将核酸与细胞核分离,因此可以发现核酸的发现。这些大分子的分子块超过1亿。5。核酸函数包括: * DNA存储遗传信息永久 * DNA控制RNA合成 * DNA基于其氮基序列决定蛋白质的发育6。DNA的双螺旋形成可确保通过在失去或破坏的遗传信息(例如Down's Syndrome或镰状细胞贫血)的情况下提供备份链,从而确保不会发生障碍。7。RNA功能包括: *使用遗传信息合成蛋白质 *基于运输的遗传信息指导蛋白质合成 *通过质膜传递遗传信息8。核酸通过控制有丝分裂,减数分裂和提供细胞呼吸的能量在人体中起着至关重要的作用。9。有丝分裂涉及在细胞分裂过程中复制染色体,从而允许创建具有与母细胞相同遗传信息的相同的子细胞。10。11。减数分裂使用核酸复制来创建性细胞,从而使生殖成为可能,没有生命将无法持续。核酸可以通过利用氮碱腺苷和核糖来提供ATP形式的能量。12。核酸是具有高分子量的物质,由碳,氢,氧,氮和磷组成,并在水解后分解成核苷酸。DNA仅在细胞核内发现,其中包含指导蛋白质产生的遗传信息。通常将其比作蓝图,存储用于构建蛋白质和其他细胞成分的说明。