摘要:基因组编辑是一组用于引入基因组靶向变化的技术。可以通过综合称为位置定向的核酸酶(SDN)来实现。SDNS的位点特异性是由蛋白质分子本身的DNA结合结构域或将SDN引向基因组中特定位点的RNA分子(S)提供的。与导致外源性DNA插入的转基因相反,基因组编辑仅影响特定的内源序列。因此,全世界的多个司法管辖区已将某些类型的基因组编辑的生物完全免除了国家生物安全法规,或者是逐案。然而,在欧盟中,法院在诱变豁免案件范围内的裁决C-528/16表明,基因组编辑的生物受到GMO指令的约束,但对希望开发和授权在EU中开发和授权基因组产品的利益相关者的实际影响仍然不清楚。欧洲食品安全局对欧洲委员会的要求作出了科学意见,对SDN-1,SDN-2和寡核苷酸指导的诱变(ODM)基因组编辑技术的植物产生了科学意见。在这篇评论中,我将(1)在欧盟提供有关转基因生物风险评估的概念背景; (2)将介绍EFSA意见的主要结论,(3)将概述对基因组编辑植物的风险评估的潜在影响。
Argonaute(AGO)蛋白是生命所有领域中存在的保守核酸引导的蛋白质。真核生物Argonaute蛋白(EAGOS)是RNA干扰途径中的关键玩具,并且在生理温度下起RNA引导的RNA核酸内切酶的作用。尽管Eagos被认为是从原核蛋白质(Pagos)演变而来的,但先前研究的Pagos无法在生理温度下催化RNA引导的RNA裂解。在这里,我们描述了来自中粒细菌库尔西亚马西里尼斯(Kmago)的独特pago。kmago利用DNA指南裂解具有较高活性的单链DNA(ssDNA)和RNA靶标。kmago还利用RNA指南在适度的温度下裂解ssDNA和RNA靶标。我们表明,Kmago可以使用5'磷酸化的DNA指南,以切割SS-DNA和RNA,例如Butyricum of Of。小的DNA结合赋予了Kmago上的显着热稳定性,我们可以通过避免DNA指南加载温度来抑制空kmago的独立于导向的质粒加工活性。更重要的是,Kmago在37°C上执行双链DNA和高度结构化的RNA的可编程切割。因此,Kmago可以被视为一种DNA引导的可编程无内能力核酸酶,以使大多数类型的核酸有效地切断。这项研究扩大了我们对AGO蛋白质的理解,可以扩展基于Pago的DNA和RNA MA-MA-MA-MA-MA-MA-NIPULATION工具箱。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 3 月 18 日发布。;https://doi.org/10.1101/2020.03.14.991976 doi:bioRxiv preprint
在较高的真核生物中,线粒体在能量生产,信号传导和生物合成中起多种作用。线粒体具有多个线粒体DNA(mtDNA)的副本,该线粒体DNA(mtDNA)编码了37个对于线粒体和细胞功能必不可少的基因。当mtDNA受到内在和外源性因素和外源性因素的挑战时,MTDNA经历修复,降解和补偿性合成。mtDNA降解是mtDNA损伤响应和维持中的新兴途径。涉及的关键因素是人线性基因组维持外切酶1(MGME1)。尽管以前的生化和功能研究,但关于MGME1介导的DNA裂解的极性存在争议。此外,DNA序列如何影响MGME1的活性仍然难以捉摸。这种信息不仅是对MGME1的理解的基础,而且对于决定mtDNA降解机制至关重要。在此,我们使用定量测定来检查底物结构和序列对MGME1的DNA结合和酶促活性的影响。我们证明了MGME1与单链DNA底物的5 0端结合并切割,尤其是在5 0-磷酸盐存在下,在DNA结合和MGME1的最佳裂解中起重要作用。此外,MGME1在末端耐受某些修饰,例如在基础切除修复中形成的5 0-脱氧核糖磷酸磷酸盐中间体。我们表明,MGME1通过不同的效率处理不同的序列,而DT和DC序列分别是最多,有效地消化的序列。我们的结果提供了对MGME1的酶促特性的见解,以及MGME1与MTDNA降解中DNA聚合酶γ的3 0 - 5 0外核酸酶活性的配位基本原理。
图 1. Alt-R Sp HiFi Cas9 Nuclease V3 促进近野生型靶向编辑效力并显著减少脱靶位点编辑。RNP 复合物由 Alt-R Sp Cas9 Nuclease V3 或 Alt-R Sp HiFi Cas9 Nuclease V3 与靶向 EMX1 基因的 Alt-R crRNA:tracrRNA 复合物结合形成。RNP 复合物 (4 µM) 通过 Nucleofection™ 方法 (Lonza) 递送到 HEK-293 细胞中。通过下一代测序 (rhAmpSeq 扩增子测序,IDT) 测量了靶位点和 9 个已知脱靶位点处的插入/缺失形成 (在 y 轴上以对数标度表示)。
CRISPR 介导的基因扰动研究的成功高度依赖于 gRNA 的质量,并且已经开发了几种工具来实现最佳的 gRNA 设计。然而,这些工具并不都适用于最新的 CRISPR 模式或核酸酶,也没有提供全面的注释方法或用于高级 CRISPR 应用的可扩展性。在这里,我们介绍了一个新的 R 包生态系统,它能够为多种 CRISPR 技术实现高效的 gRNA 设计和注释,包括 CRISPR 敲除、CRISPR 激活 CRISPR 干扰和 CRISPR 碱基编辑。核心包 crisprDesign 提供了一个全面、用户友好且统一的界面,可通过几种比对方法添加靶向和脱靶注释、丰富的基因和 SNP 注释以及十几个靶向和脱靶活动分数。这些功能适用于任何 RNA 或 DNA 靶向核酸酶,包括 Cas9、Cas12 和 Cas13。我们通过为三个案例研究设计最佳 gRNA 来说明我们工具的普遍适用性:使用碱基编辑器 BE4max 平铺 BRCA1 的 CRISPRbe 库、使用 CasRx 平铺 CD46 和 CD55 的 RNA 靶向库以及使用 CRISPRa 激活 MMP7。我们的 R 软件包套件是开源的,并通过 Bioconductor 项目部署,以方便 CRISPR 社区使用它们。
斯德哥尔摩,2024年11月4日。caszyme(维尔纽斯,立陶宛),是CRISPR基因编辑技术开发和应用的先驱,以及Integra Therapeutics(西班牙巴塞罗那,西班牙),这是一家公司,这是一家公司,这是一家公司,领导着创建基于下一代基因写作工具的高级治疗的方法,以宣布了Caszyes的使用及其caszyes的使用,并宣布了Caszyes的使用,并提高了Caszyes的使用量,并提高了Caszyes的新颖核心的使用。疗法。该协议在今年的Bio Europe上揭幕,这是本周在斯德哥尔摩举行的欧洲生物医学行业最大的合作赛事。超过2800家公司来自60个国家 /地区,有5,000多名生物制药专业人员出席。根据协议,Integra Therapeutics将将基因组编辑器CAS12L纳入其FICAT 2.0(查找和剪切转移)基因编写平台,此后在体内和EX VIVO研究中成功进行,这在人类细胞的安全性和功能方面产生了高度积极的结果。Caszyme将获得高达4000万的里程碑付款。欧元外,还有销售特许权使用费。cas12l是一个独特的CRISPR核酸酶家族,其效应子大小约为850个氨基酸,其尺寸较小和多功能性而引人注目。作为对高效和安全基因编辑的需求
2 类 CRISPR 系统极其多样化,但所有系统都共享一个效应蛋白,该蛋白包含保守的 RuvC 样核酸酶结构域。有趣的是,这些 CRISPR 相关 (Cas) 核酸酶的大小范围从 Cas9/Cas12a 的 >1000 个氨基酸 (aa) 到 Cas12f 的 400-600 个 aa。对于体内基因组编辑应用,紧凑的 RNA 引导核酸酶是理想的,并且可以简化细胞递送方法。尽管微型 Cas12f 效应子已被证明可以切割双链 DNA,但真核细胞中的靶向 DNA 修饰尚未得到证实。在这里,我们从生物化学角度表征了两种微型 VF Cas 核酸酶,SpCas12f1 (497 aa) 和 AsCas12f1 (422 aa),并表明 SpCas12f1 在植物和人类细胞中均能发挥作用,产生针对性的修饰,在植物中,短热脉冲可增强修饰效果。我们的发现为开发基于微型 Cas12f1 的基因组编辑工具铺平了道路。
在DNA折纸中结合主食的情况有限,这对于它们与热和机械处理以及化学和生物学环境至关重要。在这里,在折纸中的尼克斯的天然骨干连接中证明了两种近定量连接方法:i)助溶剂溶质二甲基亚氧化二甲基亚氧化二甲基(DMSO)辅助酶结扎和ii)CNBR通过CNBR进行的无酶化学结扎。两种方法在2D折纸中达到了90%以上的连接,只有CNBR方法在3D折纸中导致了≈80%的连接,而单位酶的连接率却产生了31-55%(2D)或22-36%(3D)。只有CNBR方法可用于3D折纸。CNBR介导的反应在5分钟内完成,而DMSO方法进行了隔夜。通过这些方法的结扎提高了最大30°C的结构稳定性,电泳过程中的稳定性以及随后的提取,以及针对核酸酶和细胞裂解物。这些方法在成本,反应时间和效率方面很简单,无聊且优越。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。