摘要:冰和水的电子特性和光学响应由其分子结构(包括氢原子的量子力学性质)复杂地决定。尽管之前进行了大量研究,但对核量子效应 (NQE) 对有限温度下水和冰电子结构的影响的全面了解仍然难以实现。在这里,我们利用分子模拟,利用高效的机器学习潜力和多体微扰理论来评估 NQE 如何影响水和六边形冰的电子带。通过比较路径积分和经典模拟,我们发现与水相比,NQE 导致冰的基本间隙重正化更大,最终在两个系统中产生相似的带隙,这与实验估计一致。我们的计算表明,相对于水,冰中质子的量子力学离域增加是导致 NQE 对冰电子结构增强的关键因素。
光学量子存储器是现代量子技术中可靠存储和检索量子信息的关键元素。目前,它们在概念上仅限于光波长范围。X 射线量子光学领域的最新进展使得光学量子存储器协议可以扩展到超短波长,从而建立 X 射线能量的量子光子学。在这里,我们介绍了一种 X 射线量子存储器协议,该协议利用机械驱动的核共振 57 Fe 吸收体通过多普勒效应在核吸收谱中形成梳状结构。这种室温核频率梳使我们能够仅使用机械运动就将 X 射线光子波包的波形控制到高精度和高保真度。这种可调、坚固且高度灵活的系统为硬 X 射线的室温紧凑固态量子存储器提供了一个多功能平台。
近年来,我们目睹了量子技术的积极发展。如今,嘈杂的中等规模量子(NISQ)ERA中的技术[2],人们可以在其中构建中间尺度的量子设备并使用大量数据进行复杂的实验(例如,请参见[3])。在长期的未来中,我们预计将出现大规模,通用和耐断层的量子设备。量子技术与现有的经典数据科学和机器学习的结合可能使我们能够解决科学和行业中更具挑战性的问题。数据中心[4]是处理大规模数据的专用硬件的集合。除了从1940年代的大型计算机室(以ENIAC为代表)的悠久历史,数据中心还经历了互联网时代的复兴,以及云计算的兴起[5]。因此,我们期望应自然开发量子版本的数据中心,以满足即将到来的量子时代可能的大规模数据处理需求。我们的量子版本的数据中心需要在这种量子时代的信息科学中具有广泛的应用,包括量子计算[2],[6] - [8],量子通信[9] - [15]和量子传感[16] - [18]。这样的量子雅应该有哪种硬件形式?在这里,我们提出了量子数据中心(QDC)的概念[1]。我们指出,任何QDC都应包括两个自然部分:量子随机访问存储器(QRAM)[19] - [27]和量子网络[12],[14],[15],[15],[28] - [33]。我们认为QRAM的组合QRAM是一种量子记忆的特定类型,允许量子地址和输出的叠加,而量子网络则促进了量子量处理器之间跨物理距离之间的量子处理器之间的信息传输。
摘要 — 当前的单片量子计算机架构可扩展性有限。一种有前途的扩展方法是使用模块化或多核架构,其中不同的量子处理器(核心)通过量子和经典链路连接。这种新的架构设计带来了新的挑战,例如昂贵的核心间通信。为了在执行量子算法时减少这些移动,需要一种有效的映射技术。本文详细讨论了多核量子计算架构的量子电路映射问题。此外,我们通过执行架构可扩展性分析,进一步探索了一种映射方法的性能,该方法被表述为随时间划分的图问题。索引术语 — 可扩展性量子计算系统、多核量子计算机、量子算法映射。
多核量子计算已被确定为解决量子计算的可伸缩性问题的解决方案。然而,量子芯片的相互作用并不是微不足道的,因为量子通信具有量子怪异的份额:量子偏压和无键的定理使转移量子的刺激性刺激性,在这种情况下,每一个额外的纳米纳赛计数和重新恢复是完全不可能的。在本文中,我们介绍了对多核量子计算机的量子通信进行彻底建模的第一步,这可能被视为量子互联网和芯片网络的众所周知的范式之间的中间点。,我们强调量子计算中延迟和错误率之间存在的深层纠缠,以及这如何影响这种情况的量子网络设计。此外,我们显示了一组最先进的实验研究参数的计算和通信资源之间的权衡。观察到的行为使我们可以预见到多核量子体系结构的潜力。
摘要 - 尽管具有巨大的潜力,但仍不清楚量子计算如何扩展以满足其最强大的应用程序的要求。除其他问题外,可以将可以集成到单个芯片中的量子位数量很大。多核架构是解锁量子处理器可扩展性的公司候选者。尽管如此,量子通信的脆弱性和复杂性使这是一个具有挑战性的方法。全面的设计应意味着整合量子计算机体系结构中的通信堆栈。在本文中,我们通过在设计核心中纠缠沟通和计算可能有助于解决开放挑战来解释这种愿景。我们还总结了我们应用结构化设计方法支持该愿景的第一个结果。通过我们的工作,我们希望通过设计指南做出贡献,这些指南可能有助于释放量子计算的潜力。
我们使用Q-tip4p/f模型对H 2 O和D 2 O进行途径分子动力学(PIMD)模拟。在P = 1 bar上进行模拟,并在包括平衡(T≥273K)和超冷(210≤t<273 K)的水中的广泛温度下进行。根据PIMD模拟计算得出的H 2 O和D 2 O的密度与平衡和超冷态的实验非常吻合。我们还特别地评估了重要的治疗性响应函数,即热膨胀系数αP(t),等热压缩性κt(t),同异含量热容量C P(t)和静态介电常数ε(t)。尽管这些特性在优秀的[αp(t)和κt(t)]或半定量协议[c p(t)和ε(t)]中,并在平衡方面进行了实验,但在冷却后,它们越来越被低估。随之而来的是,在(q-tip4p/f)水的PIMD模拟中包含核量子效应并不足以在密度,熵和电动偶极力矩时的异常大弹性中繁殖过的大型大型爆发。已经假设水可能在p> 1 bar的超冷态中表现出液 - 液体临界点(LLCP),并且这样的LLCP在1 BAR中在C P(T)和κt(t)中产生最大值。还将RPMD/PIMD模拟的结果与从Q-TIP4P/F水的经典MD模拟获得的相应结果进行了比较,其中原子由单个相互作用位点表示。与该假设一致,尤其是与实验相一致的,我们发现在q-Tip4p/f的κt(t)中,在t≈230-235k处的Q-Tip4p/f轻和重水。在C P(t)中未检测到C P(T)中的最大值。我们还可以在T≥210K中检测到diffusion coeffusion coeffusion coeffusion coeffience coeffience coefient coefient coefient coefient coefient difientient(t)t 2 ofirient difientirient(t)t 2 o和t 2 o。 Dynamics(RPMD)技术,发现计算机模拟与所研究的所有温度都非常吻合。令人惊讶的是,我们在所研究的大多数属性中发现了较小的差异,c p(t),d(t)和结构属性是唯一的(预期)例外。