科罗拉多大学博尔德分校 (CU Boulder) 和加州大学洛杉矶分校 (UCLA) 的研究人员合作发现了一种使用钍薄膜制造核钟的新方法。新闻稿称,这项技术飞跃相当于在电子产品中使用半导体和集成电路,将允许制造放射性降低 1000 倍且成本更低的核钟。
已知 229 Th 原子核具有同质异能态,其能量比基态高出约 8 eV,比典型的核激发能低几个数量级。这启发了低能核物理领域的研究,其中核跃迁率将受电子壳层影响。低能量使 229 Th 同质异能体易于进行共振激光激发。利用激光冷却的捕获钍离子或透明固体中的钍掺杂离子实现核共振,可作为非常高精度光学时钟的参考。这种核钟与传统原子钟之间的精确频率比较将提供对超出标准模型的假设新物理效应的灵敏度。虽然 229 Th 的激光激发仍然是一个尚未解决的难题,但最近的实验已经提供了有关跃迁能量和相关核特性的重要信息。
同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。