同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。
已知 229 Th 原子核具有同质异能态,其能量比基态高出约 8 eV,比典型的核激发能低几个数量级。这启发了低能核物理领域的研究,其中核跃迁率将受电子壳层影响。低能量使 229 Th 同质异能体易于进行共振激光激发。利用激光冷却的捕获钍离子或透明固体中的钍掺杂离子实现核共振,可作为非常高精度光学时钟的参考。这种核钟与传统原子钟之间的精确频率比较将提供对超出标准模型的假设新物理效应的灵敏度。虽然 229 Th 的激光激发仍然是一个尚未解决的难题,但最近的实验已经提供了有关跃迁能量和相关核特性的重要信息。
科罗拉多大学博尔德分校 (CU Boulder) 和加州大学洛杉矶分校 (UCLA) 的研究人员合作发现了一种使用钍薄膜制造核钟的新方法。新闻稿称,这项技术飞跃相当于在电子产品中使用半导体和集成电路,将允许制造放射性降低 1000 倍且成本更低的核钟。
你为什么选择加州大学洛杉矶分校?这个问题我可以回答!我参观过的学校不多,但加州大学洛杉矶分校是最明亮的校园,有着非常明亮和丰富多彩的氛围。食物更是另一个层次。我也喜欢快速通道计划。我的第一印象就是明亮的校园。加州大学洛杉矶分校还允许你成为一个人,而不是一个工程专业的学生。例如,我可以参加跆拳道俱乐部。我有很多朋友参加了艺术和音乐俱乐部。我喜欢加州大学洛杉矶分校除了工程之外还有艺术和媒体。大校园的生活怎么样?与高中没有太大区别,加州大学洛杉矶分校可能有更多的人,但我不会认识他们每个人,而且由于快速通道,我仍然有一种社区感。此外,由于校园规模大,我仍然可以结识各种各样的人。还有俱乐部!
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。
3月2019年 - 礼物:Postech 2009年2月 - 2019年1月的化学系完整教授:助理,化学材料科学系副教授,高级材料科学系,Postech 2006年3月至2009年2月:劳伦斯·伯克利国家实验室的材料科学材料科医学博士研究员; Mentor: N. P. Balsara June 2016 – present: Associate Editor, Macromolecules (ACS) Mar 2013 – present: Editorial Advisory Board, Journal of Applied Polymer Science Mar 2015 – present: Editorial Advisory Board, Journal of Polymer Science: Polymer Physics Jan 2018 – present: Editorial Board, Chinese Journal of Polymer Science Jan 2021 – present: Editorial Advisory Board, Materials Horizons (RSC) Honors和奖项•美国物理学会,2021年,•辛格科科学奖,韩国科索,2018年•约翰·H·狄龙奖章,美国美国物理学会,2017年,2017年•韩国科学技术学院,韩国,韩国,韩国,2016年,2016年•IUPAC年轻聚合物科学奖,2016年,IUPAC MACRE科学系,2016年,IUPAC MACROCROCH,2016年•15th韩国,2015年•POSCO技术奖,POSCO,韩国,2015年•John Wiley&Sons,John Wiley&Sons and the Korean聚合物协会,2013年•Chong-Am Science for Young Crocieship,2011年,2011年•Postech的最佳演讲•2011年最佳•2011年亚洲杰出的年轻科学奖,2010年,年轻的科学奖,•2010年,年轻科学奖。 Nano Systems Institute,杰出纸质奖,2005年。 •韩国化学工程师研究所,韩国最佳纸张奖,2005年。 •最佳纸张奖,国际纯和应用化学联盟(IUPAC),法国,2004年。2019年 - 礼物:Postech 2009年2月 - 2019年1月的化学系完整教授:助理,化学材料科学系副教授,高级材料科学系,Postech 2006年3月至2009年2月:劳伦斯·伯克利国家实验室的材料科学材料科医学博士研究员; Mentor: N. P. Balsara June 2016 – present: Associate Editor, Macromolecules (ACS) Mar 2013 – present: Editorial Advisory Board, Journal of Applied Polymer Science Mar 2015 – present: Editorial Advisory Board, Journal of Polymer Science: Polymer Physics Jan 2018 – present: Editorial Board, Chinese Journal of Polymer Science Jan 2021 – present: Editorial Advisory Board, Materials Horizons (RSC) Honors和奖项•美国物理学会,2021年,•辛格科科学奖,韩国科索,2018年•约翰·H·狄龙奖章,美国美国物理学会,2017年,2017年•韩国科学技术学院,韩国,韩国,韩国,2016年,2016年•IUPAC年轻聚合物科学奖,2016年,IUPAC MACRE科学系,2016年,IUPAC MACROCROCH,2016年•15th韩国,2015年•POSCO技术奖,POSCO,韩国,2015年•John Wiley&Sons,John Wiley&Sons and the Korean聚合物协会,2013年•Chong-Am Science for Young Crocieship,2011年,2011年•Postech的最佳演讲•2011年最佳•2011年亚洲杰出的年轻科学奖,2010年,年轻的科学奖,•2010年,年轻科学奖。 Nano Systems Institute,杰出纸质奖,2005年。•韩国化学工程师研究所,韩国最佳纸张奖,2005年。•最佳纸张奖,国际纯和应用化学联盟(IUPAC),法国,2004年。•大学授予首尔国立大学的奖学金,1996- 1999年。
光子损耗是完全光子实现设备独立量子键分布(DIQKD)的主要障碍。最近的工作激励,表明路由钟场的场景为远程量子相关性认证提供了提高的检测效率低下,我们研究了基于路由设置的DIQKD协议。在这些协议中,在某些测试回合中,来自源的光子通过主动控制的开关将其路由到附近的测试设备而不是遥远的测试设备。我们展示了如何使用非交通性多项式优化和Brown-Fawzi-Fazwi方法分析这些协议的安全性并计算关键率的下限。我们根据基于CHSH或BB84相关性的几个简单的两数Qubion路由DIQKD协议的渐近密钥速率确定下限,并将其性能与标准协议进行比较。我们发现,与非路由同行相比,在理想情况下,DIQKD方案可以显着提高检测效率要求,高达30%。值得注意的是,路由的BB84协议可实现远处设备的检测效率低至50%的正键率,这是任何QKD协议的最小阈值,这些QKD协议具有两个不受信任的测量。但是,我们发现的优势对噪声和影响涉及其他测试装置的短程相关性的损失高度敏感。
寻找更精确、更准确的频率标准在基础科学、精密测量和技术应用的发展中发挥着关键作用。如今,光学钟的不确定度已达到 10 − 18 及以下。本博士论文主要研究囚禁离子光学钟的研发和特性。介绍了两种不同的囚禁离子钟:一种带有单个 40 Ca + 离子,另一种带有 40 Ca + / 27 Al + 混合离子晶体。论文首先概述了操作和表征囚禁离子钟所需的理论基础,并描述了实验装置。接下来是三个主要项目的成果:第一个项目以德国联邦物理技术研究院 UTC(PTB)的 4 s 2 S 1/2 ↔ 3 d 2 D 5/2 40 Ca + 钟跃迁相对于协调世界时的绝对频率测量为中心。为了进行这项测量,我们在因斯布鲁克的实验室和 PTB 的时钟之间建立了一个链接,并使用全球导航卫星系统 GNSS 进行了特性分析。我们的时钟和 PTB 的时钟之间的比较是使用精密单点定位 ( PPP ) 技术进行的。从 16 日到 25 日,进行了为期十天的活动