The rational use of biologically active substances or plant growth stimulants from natural materials like seaweed is one of the most promising trends in agriculture, as seaweed is considered a safe and sustainable bio stimulant for improving plant growth, particularly under abiotic stress due to its high content of Cytokinin's, auxins, gibberellins, amino acids, phytohormones, Osmo protectants, mineral nutrients, and抗菌化合物。当前的工作探讨了海藻提取物对不同作物的影响,它们在植物中起的功能作用以及海藻提取物在综合作物管理系统中的潜在价值对可持续作物生产。各种元素会影响农业中使用的海藻提取物的有效性,例如海藻,制造方法和浓度,而应用技术被认为是海藻提取物在改善植物生长中有效性的决定因素。海藻提取物以两种基本方式合成:通过物理技术和化学方法。使用碱提取是最商业的方法,在维持生物活性成分方面非常有效。许多报告已经证实了海藻提取物在改善植物生长方面的疗效及其在改善种子发芽,改善根系的生长,提高幼苗生存率,提高幼苗生长和在非生物胁迫下提高植物的生长和生产力,并增强植物对病原体的耐药性。
摘要:促进植物生长细菌(PGPB)可以通过促进养分摄取,氮固定,防止病原体,胁迫耐受性和/或增强植物产生的生产来增强植物健康。驱动植物 - 细菌关联的遗传决定因素仍在研究中。为了鉴定与对PGPB有反应的性状高度相关的遗传基因座,我们使用了用Azoarcus olearius dqs-4 t处理的拟南芥种群进行了全基因组关联研究(GWAS)。表型,通过改善,抑制或不影响根系或射击特征,对细菌治疗的305次拟南芥饰物对细菌治疗的反应不同。GWA映射分析鉴定了几个与初级根长或根新鲜重量相关的预测基因座。进行了两项统计分析,以缩小潜在基因候选物,然后进行单倍型块分析,从而鉴定出与拟南芥根新鲜重量对细菌接种的反应性相关的11个基因座。我们的结果表明,植物对A. olearius dqs-4 T响应接种的能力的差异很大,同时揭示了与所测量的生长性状相关的基因座的相当复杂性。这项研究是可持续繁殖策略的有希望的起点,用于未来的种植实践,可以采用有益的微生物和/或根部微生物组的修改。
杂草可以告诉您很多有关草坪状况的信息,并表明您需要做些什么才能种植出天然抗杂草和害虫的健康草。学会“读懂杂草”,了解它们对您的草坪护理方法和土壤条件的影响,这样您就可以创建健康的草坪,从长远来看,这将减少工作量。杂草在土壤压实、施肥不足、pH 值不平衡以及浇水、播种或修剪不当的草坪中茁壮成长。读懂杂草其实非常简单。使用下表识别草坪中的杂草,并根据以下信息纠正促进杂草生长的条件。例如,一年生蓝草通常表明土壤压实和浇水过多。曝气和适当的灌溉将纠正促进蓝紫色生长的条件。请记住,许多被视为杂草的植物具有有益的特性。尝试培养对某些杂草的耐受性。例如,三叶草被认为是一种典型的草坪杂草,它从大气中吸收游离氮并将其分布到草中,从而帮助草生长。三叶草根系广泛且极耐旱,为土壤生物提供重要资源,而且在草坪自然休眠后,三叶草仍能长时间保持绿色。马唐草可控制侵蚀;蒲公英的深根可将养分返回地表;而芭蕉是可食用的!
由Joop Vermeer教授领导的植物分子和细胞生物学的实验室正在招募一名大多数。该位置可从2025年5月开始。这个由SNSF资助的职位持续了2年,可以选择额外的一年。VermeerLab研究了使用横向根形成作为模型的细胞间通信如何适应新器官的发出。最近,我们已经建立了胸膜大黄蜂作为一种新模型,以研究横向根发育过程中的空间适应反应。该项目旨在解解在侧根形成过程中内胚层去分化的基础机制。与博士生一起,您将使用CRE-Lox介导的细胞标记,多光子显微镜,SCRNASEQ(与Bert de Rybel教授,PSB,Ghent,Ghent)和CRISPR-CAS9介导的基因组工程。目标是更好地了解具有更复杂根系的物种中根分支的网络。我们使用并开发遗传和分子工具来操纵信号传导是特定的细胞层,即在多个尺度,转录组学,蛋白质组学,组织学和植物生理学上的高分辨率和实现现象,以了解多种植物物种中根分支的调节。要求: - 植物分子/细胞生物学的博士学位(或即将获得的) - 至少1个作者出版物(包括Biorxiv) - 愿意申请资金的意愿 - 熟练英语(口头和书面) - 对大师级学生的兴趣 - 对大师级学生的兴趣 - 以下几个或以下几个领域的经验:
摘要。一般来说,煤矿开采都是公开进行的,使用重型设备在表土区取土和搬运土壤,直到可以进行煤矿开采。因此,由于存在物理、化学和生物土壤损害,营养水平较低。生物修复是利用土壤微生物改善前煤矿土地的替代方法之一,这些微生物对土壤植物激素水平有影响,例如产生生长素的根际细菌。本研究旨在分离和表征前煤矿土壤上生长的豆科植物根系的根际细菌,并定性和定量确定其产生 IAA 激素的能力。表征包括革兰氏染色特性、菌落形态、分离物排列和细胞形状。然后,分别使用 Salkowski 方法和分光光度法测试细菌定性和定量产生 IAA 的能力。结果表明,在原煤矿区土壤上生长的豆科植物根际细菌分离株中有 11 种能够产生 IAA 激素,平均浓度为 15.949 ppm(2IA4);10.762 ppm(4IIE3);9.700 ppm(ID3);9.422 ppm(3IB4);7.970 ppm(2IA3);7.847 ppm(6IIB3);7.268 ppm(8IIIB4);6.804 ppm(IIID5);6.459 ppm(IE5);5.379 ppm(7IIIB3);和 5.086 ppm(5IB3)。浓度最高的根际细菌分离株有可能被选为原煤矿区土壤上豆科植物的生长促进剂,以提高豆科作物的生产力。
F. 植物材料 I. 所有植物在任何情况下均应符合美国园艺协会(前身为美国苗圃和景观协会)发布的“美国苗圃标准”(ANSI Z60.1)最新版本的要求。 II. 在任何情况下,对于任何和所有植物材料,植物名称应优先于通用名称。 III. 植物应清晰地标注正确的名称和尺寸。每种植物至少应在一株植物上保留标签,以便在最终检查期间进行验证。 IV.树皮磨损、日晒伤、变形或树枝新鲜切割超过 1¼ 英寸且尚未完全愈合的树木应被拒绝。任何时候都不得用电线或绳索捆绑植物,以免损坏树皮或折断树枝。V. 所有植物均应是其物种或品种的典型特征,并应具有正常的生长习性:树枝发达、叶子茂密、根系旺盛,并且没有疾病、昆虫、害虫、卵或幼虫。VI. 苗圃生长的树木的卡尺测量应在树干的某一点进行。对于直径不超过四英寸 (4") 的树木,树干应高于自然坡度六英寸 (6")。如果离地面六英寸 (6") 处的直径超过四英寸 (4") 直径,则应在自然坡度以上 12 英寸处测量直径。VII. 灌木应测量灌木的平均高度或蔓延,而不是最长的树枝。VIII. 树木和灌木应小心处理根球。
土壤菌群通过执行一系列基本功能,例如碳(C)储存,营养循环,有机物分解和初级生产,在恢复退化的生态系统中起关键作用,尤其是在面对严重土壤侵蚀的种植园中[1]。作为恢复的主要生物群落,人工林通过提供有利的栖息地(例如根际)来促进土壤菌群的丰富生物多样性,从而支持高水平的抗性和对土壤侵蚀的抗韧性[1,2]。这种能力在很大程度上取决于根际中植物和微生物群中复杂的生物学相互作用,特别是涉及真菌和细菌与植物的共生相关性[3-5]。然而,种植园中多种根系相关的微生物及其相互作用的程度仍然未知。robinia pseudoacacia脱颖而出,是恢复降解生态系统的优先物种,这要归功于其与氮(N)固定根瘤菌和高侵蚀耐受性的受益共生[6]。除了根瘤菌共生外,伴有杂草菌根(AM)真菌具有有限养分的获取能力,尤其是磷(P)[7,8]。这种菌根结合可能与共生N 2固定剂(根瘤菌)相互作用,通过修饰根际微生物群来对植物的性能发挥协同作用[9,10]。木质豆类及其根 - 相关的微生物群也据报道增强额外的营养循环和有机
抽象的幼苗根特性影响了充满挑战的环境下的植物建立。珍珠小米是最热和干旱的谷物作物之一,可在整个撒哈拉以南萨赫勒地区提供重要的食物来源。Pearl Millet的早期根系具有一个单一快速生长的主要根,我们认为这是对Sahelian气候的适应。使用作物建模,我们证明了早期的干旱压力是珍珠小米被驯化的萨赫尔农业部的重要限制。此外,我们表明,珍珠小米的一级根生长与田间条件下的早期水胁迫耐受性相关。遗传学包括全基因组关联研究和定量性状基因座(QTL)方法,可以确定控制此关键根特征的基因组区域。结合基因表达数据,这些基因组区域之一的重新序列和重新注释,确定了谷歌蛋白编码基因PGGRXC9作为候选应力弹性根生长调节剂。对其最接近的拟南芥同源物Atroxy19的功能表征揭示了该谷胱甘肽(GRX)基因进化枝在调节细胞伸长中的新作用。总而言之,我们的研究提出了GRX基因在赋予根细胞伸长并增强珍珠小米对萨赫勒环境的弹性方面的保守功能。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
日益加剧的气候波动威胁着世界粮食安全,因为这些是限制农业生产的非生物和生物胁迫的主要驱动因素(Rosenzweig 等人,2014 年)。非生物胁迫,例如过冷或过热、降水或干旱以及土壤盐分或钠化,是植物在应对气候变化时经历的一些最常见的胁迫类型(Ashraf 等人,2018 年;Barmukh 等人,2022 年;Soren 等人,2020 年;Varshney、Barmukh 等人,2021 年)。温度波动,尤其是极寒天气,可能导致小麦(Triticum aestivum)、水稻(Oryza sativa)和玉米(Zea mays L.)等主要谷类作物遭受寒害。这些作物要么天生不适应这种寒冷条件,要么没有专门为这种寒冷条件培育(Dolferus,2014;Janksa 等人,2010;Solanke 等人,2008)。在零度以下的条件下,细胞内或细胞外都会形成冰晶,生物膜通透性会发生变化,并产生活性氧 (ROS)。这些变化导致了一系列症状,例如发芽困难、幼苗活力下降或生长受阻、叶片变小、叶片变黄枯萎、分蘖减少、根系增殖不良、植物水分关系紊乱、养分吸收受阻、抽穗过早、种子败育增加、种子大小减小,从而导致产量下降 (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et al., 2015 ; Oliver et al., 2002 ; Wang et al., 2013 )。
