抽象的新西兰牧民受益于白色三叶草侵蚀性共生的n 2,但根瘤菌的n固定能力差异很大。Rhizobium leguminosarum S11N9, isolated in NZ, outperforms the current commercial isolate TA1 in laboratory, glasshouse, and field trials.这项研究调查了S11N9的生产和保质期,以确立其作为白色三叶草的潜在新根茎接种剂的可行性。Freeze dried and peat inoculants were prepared for both the S11N9 and TA1 rhizobia.Peat inoculants were subsequently formulated into granules and seed coatings using AgResearch technologies.Both isolates produced similar fermentation yields.S11N9 stored as freeze-dried powder at 4 o C survived longer than TA1 (12 vs. 10 months, respectively).同样,当存储在4°C(分别为44.7 vs. 21.7个月)和20°C(分别为17.2 vs 9.1个月)时,S11N9泥炭接种剂的保存期比TA1更长。涂有S11N9的种子的初始载荷高于TA1(10 7 vs 10 6根瘤/g种子),但在20°C下以类似速率存储的种子上下降。在泥炭颗粒中,两个分离株在20°C下均稳定两个月,但TA1在三个月后降至目标规格以下,而S11N9保持在阈值以上。结果表明,分离株S11N9是TA1的有前途替代品,并且具有很高的潜力,可以作为白色三叶草的商业接种剂。
根瘤菌与土壤中的豆科植物相互作用,形成氮固定结节,其中根瘤菌和植物细胞共存。尽管有关于谷物中根茎相关的氮固定的新兴研究,但豆科植物相互作用的相互作用更加良好,通常是研究植物中根茎介导的氮固定的模型。根瘤菌在许多生态系统中在氮循环中起着至关重要的作用。但是,根瘤菌对土壤条件和理化特性的变化高度敏感(即水分,温度,盐度,pH和氧气可用性)。全球气候变化直接引起的这种变化挑战了自然和农业环境中根茎的适应能力。尽管有一些研究发现了赋予不同环境条件的根瘤菌基因,但根瘤菌胁迫耐受性的遗传基础仍然很少理解。在这篇综述中,我们强调了改善土壤中根瘤菌生存以增强其与植物的共生的重要性,从而可以提高作物产量并促进可持续的农业系统的建立。为了实现这一目标,我们总结了全球气候变化对根瘤菌共生的关键挑战,并整理了当前对胁迫耐受性相关基因和根茎中途径的知识。最后,我们提出了最新的基因工程方法,例如合成生物学,以提高根茎对改变Envi Ronmental条件的适应性。
摘要:在当地市场上出售的手洗主要由不同的化合物组成,这些化合物可能以多种方式对我们的皮肤有害。根据这一理论,研究重点是寻找有机替代成分进行手洗制备。人们总是在寻找由天然成分制成的化妆品,以避免合成洗手制剂的负面影响,例如刺激,皮炎,干燥和瘙痒。他们还希望避免过敏反应和任何其他不利的效果。通过使用姜,neem,reetha.hand洗涤等天然成分来避免副作用以避免副作用的主要目的是非常重要的每日仪式。在这项研究中,使用既定抗菌品质的天然提取物的混合物用于制定草药洗手液。发现手洗配方在物理参数方面有效并有效地清洁手。使用多个参数评估准备的手洗,包括颜色,气味,pH,粘度和稳定性。配方后,使用一系列物理和化学特征评估草药洗手液,包括pH,颜色,气味,外观,纹理,纹理,柔性,柔软性,皮肤刺激性,泡沫高度,泡沫保留,清洁作用,稳定性和其他因素。发现起义在正常范围内,几乎没有副作用
该研究研究了使用结构表征(气相色谱质量谱图,GC-MS,GC-MS和傅立叶转化基础型,FTIR,FTIR)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir)(ftir),分别研究了1.0 m HCl和0.5 m H 2 SO诱导的低碳钢上的抗腐烂潜力(ZO)。电位动力学极化,PDP)技术和理论模拟。进行了结构表征,以鉴定植物提取物中存在的化学成分和官能团,而电化学技术和理论计算则用于检查提取物的抗腐蚀潜力并确定实验结果。GC-MS的结果表明,提取物中存在二十三(23)个化合物,其中三个(1-(1,5-二甲基-4-己基)-4-甲基 - 十二烷酸,十二烷酸和9-二十二苯卡烯酸(Z)-2- hydroxy-1-(hydroxy-1-(hydroxy-etraculation for for in Concution)在ZO提取物中存在以下官能团(O – H,C = C,C = O,C – C和C – H)。EIS的结果表明,ZO提取物在1 M HCl中的低碳钢和0.5 m H 2中的低碳钢和93.6%的腐蚀抑制作用分别在1000 mg / l的最大抑制剂浓度下分别为1000 mg / l。另外,PDP的结果表明,ZO提取物作为混合抑制剂起作用,因为阳极反应过程都改变了。量子化学计算结果表明,与其他两种化合物相比,9-八度二苯甲酸(Z)-2-羟基-1-(羟甲基)乙基酯具有良好的能隙(∆ E),表明其在硫酸环境中与金属表面更好地与金属表面相互作用。通过分子动力学模拟,在H 2 So 4环境中,在H 2 SO 4环境中,其良好的吸附能量为-355.55 kcal / mol在H 2 So 4 So环境中与-167.81kcal / mol相比。
摘要 生姜 ( Zingiber officinale ) 因其对不同微生物病原体的潜在抗菌活性而长期被用作自然疗法。此外,在尼日利亚等许多国家,生姜被组合用作食物配方。这项研究旨在确定生姜提取物的抗菌活性,采用盘状琼脂扩散法,对生姜根茎提取物的抗菌特性进行了金黄色葡萄球菌的筛选本研究表明生姜提取物对金黄色葡萄球菌具有强大的抗菌活性,在 200 mg/ml 时抑制区最高 (17.0 mm),在 1.8 mg/ml 时抑制区最低 (0.0 mm)。生姜提取物的最低抑菌浓度和最低杀菌浓度分别为 125 mg/ml 和 175 mg/ml。在 P ≤ 0.05 时,随着浓度的增加,提取物的抑制区没有统计学上显着差异。生姜提取物在低浓度下具有很强的抗菌特性,因此可以作为应对耐甲氧西林和万古霉素金黄色葡萄球菌的替代品。关键词:抗菌;细菌耐药性;生姜;院内感染;金黄色葡萄球菌。1. 引言生姜是一种自古以来在世界各地广泛使用的药用植物;它属于姜科 [1]。生姜已被证实含有高治疗价值的成分。生姜因其对不同微生物病原体的潜在抗菌活性而长期被用作自然疗法。更重要的是,在尼日利亚等许多国家,生姜被用于不同的食物配方中。生姜具有抗血小板、抗菌、抗真菌、抗病毒、抗炎等多种应用