1 Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China 2 Water Resources Section, Delft University of Technology, Delft, the Netherlands 3 Stockholm Resilience Centre (SRC), Stockholm University, Stockholm, Sweden 4 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 5 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany 6 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland 7 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 8 Key Laboratory of Hydrometeorological Disaster机制和警告,水资源部/水文与水资源学院,南京信息科学技术大学,NANJING 210044,中国9东部森林环境威胁评估中心,USDA森林服务南部研究站,研究三角研究站,Triangle Park,Triangle Park,Triangle Park,NC 27709,USA
引言人毛的发育是一个快速的过程。在生长阶段,除了骨髓外,没有其他组织的有丝分裂活性速率高(1)。一组源自外胚层的卵泡祖细胞可以产生高达3个卵泡芽(图1)。在16-20周时,卵泡开始产生头发。卵泡材料粘在强行拉的头发上通常是外胚层起源。头发生长阶段发生在3 - 5年以上,其余阶段大约3个月。阴毛生长阶段发生在4-7个月内,其余阶段持续6-9个月(1)。因此,强行拉的头发可能处于生长阶段,而强行拉的阴头可能处于休息阶段。高有丝分裂率可以增加发生突变的机会。体细胞突变是体细胞中基因组DNA序列的任何永久变化,而不是种系中的任何永久变化。镶嵌物是一个单个或组织,至少两个细胞系在基因型或核型中不同,而核型则来自单个zygote,而嵌合体是由源自两个遗传上不同zygotes的细胞组成的个体(2)。这项研究中提供的数据为多个耻骨根部的镶嵌性和一个单个个体的单头发根源提供了证据。
背景:植物-微生物相互作用是不同生态系统中进化和生存的关键。健康的植物被各种微生物所寄生,这些微生物被称为植物微生物群,对植物的生长和适应性有着深远的影响。植物通过各种膜定位受体感知微生物。质膜水平的识别会引发植物宿主的特定反应,从而影响相关微生物群落的结构和功能。识别和理解这些相互作用背后的机制将使我们能够以可持续的方式改善植物健康和作物产量,同时减少由于基于耗能和气候昂贵的化学品的密集作物生长系统而产生的碳足迹。
Brenner Building,圣詹姆斯大学医院,LS9 7TF,利兹,英国; 15 n.t.do@leeds.ac.uk 16 5。 巴西联邦加里奥格兰德大学(UFRGS)联邦牙科学校的预防和社区牙科系。 Ramiro Barcelos,2492; Alegre Porto,18 90035-003;巴西; fatturiparolo@yahoo.com 19 6。 巴西联邦20号RIO Grande Do Sul(UFRGS)牙科学校的预防和社区牙科系。 Ramiro Barcelos,2492; Alegre Porto,21 90035-003;巴西; marisa.maltz@gmail.com 22 7。 巴西联邦23里奥格兰德大学(UFRGS)牙科学校的预防和社区牙科系。 Ramiro Barcelos,2492; Alegre Porto,24 90035-003;巴西; rodrigoarthur.ufrgs@gmail.com 25Brenner Building,圣詹姆斯大学医院,LS9 7TF,利兹,英国; 15 n.t.do@leeds.ac.uk 16 5。巴西联邦加里奥格兰德大学(UFRGS)联邦牙科学校的预防和社区牙科系。Ramiro Barcelos,2492; Alegre Porto,18 90035-003;巴西; fatturiparolo@yahoo.com 19 6。巴西联邦20号RIO Grande Do Sul(UFRGS)牙科学校的预防和社区牙科系。Ramiro Barcelos,2492; Alegre Porto,21 90035-003;巴西; marisa.maltz@gmail.com 22 7。巴西联邦23里奥格兰德大学(UFRGS)牙科学校的预防和社区牙科系。Ramiro Barcelos,2492; Alegre Porto,24 90035-003;巴西; rodrigoarthur.ufrgs@gmail.com 25
摘要:自由基导向解离(RDD)是一种脆弱的技术,其中通过选择性的213/266 nm光解离的碳 - 碘键被重新分离并碰撞激活。在先前的RDD实验中,通过离子陷阱碰撞诱导的解离(CID)实现碰撞激活。高能碰撞解离(HCD)与CID在离子的激发方式以及观察到的片段的数量,类型或丰度方面都不同。在本文中,我们探讨了HCD在RDD实验中激活的使用。虽然RDD-CID有利于从根本导向的途径(例如A/Z-ION和侧链损耗)产生的碎片,而不管使用的激活能量如何,RDD-HCD光谱差异很大,而较低的能量有利于RDD,而较高的能量则偏向于由移动蛋白(b/y-y)引起的较高能量的产品,而较高的能量有利于RDD,而较高的能量则偏爱。RDD-HCD基于所提供的HCD能提供了更可调的碎片化。重要的是,激进产物的丰度随着HCD能量的增加而降低,证实RDD通常相对于移动 - 普罗顿驱动的解离而通过较低的能源屏障进行。因此,可以通过在初始或随后的解离事件后不包含自由基的片段的较高生存能力来解释b/y型在较高能量的b/y敌人的优势。此外,这些结果证实了先前怀疑HCD光谱与由于多个解离事件引起的CID光谱不同。关键字:碎片,光解离,自由基导向解离,更高能量的碰撞解离,碰撞引起的解离■简介
放牧干扰可改变植物根际微生物群落结构,从而改变反馈机制,促进植物生长或诱导植物防御。然而,人们对这种变化在不同放牧压力下如何发生和变化,以及根部代谢物在改变根际微生物群落组成中的作用知之甚少。本研究研究了不同放牧压力对微生物群落组成的影响,并利用代谢组学方法探索了不同放牧压力改变根际微生物组的机制。放牧改变了微生物群落的组成、功能和共表达网络。在轻度放牧(LG)下,一些腐生真菌,如香菇属、Ramichloridium 属、Ascobolus 属。和 Hyphoderma sp. 显著富集,而在重度放牧 (HG) 下,潜在有益的根际细菌,如 Stenotrophomonas sp.、Microbacterium sp. 和 Lysobacter sp. 显著富集。有益的菌根真菌 Schizothecium sp. 在 LG 和 HG 中均显著富集。此外,所有富集的有益微生物都与根系代谢物呈正相关,包括氨基酸 (AA)、短链有机酸 (SCOA) 和生物碱。这表明这些显著富集的根际微生物变化可能是由这些差异性根系代谢物引起的。在放牧压力下,推测根系代谢物,尤其是氨基酸如L-组氨酸,可能调控特定的腐生真菌参与物质转化和能量循环,促进植物生长。此外,为了缓解高放牧压力,提高植物的防御能力,推测根系在放牧干扰下会主动调节这些根系代谢物如氨基酸、中链氨基酸和生物碱的合成,然后分泌它们来促进一些特定的促进植物生长的根际细菌和真菌的生长。总之,禾本科植物可以通过改变根系代谢物的组成来调控有益微生物,在典型的草原生态系统中,不同的放牧压力下,其响应策略也不同。
结果:两种物种之间的土壤特性和根部特征存在显着差异,其中有土壤水含量(SWC)和根际和散装土壤中的土壤有机碳(SOC)(p <0.05)。虽然根部渗出液的代谢物分类相似,但它们的成分变化,而萜类化合物是主要的差分代谢物。土壤微生物结构和多样性也表现出显着差异,网络中具有不同的关键物种,并且主要与氮和碳周期有关的差异功能过程。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。 HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。
控制土传疾病是番茄生产的主要问题之一。本研究旨在调查使用富含细菌和真菌的蚯蚓堆肥对感染根结线虫 (Meloidogyne javanica) 和枯萎病 (Fusarium oxysporum) 的番茄植株生长参数的影响。蚯蚓堆肥的应用量包括控制量、最佳量和过量量。生物防治剂是菌根真菌 (Glomus mosseae) 和两种拮抗细菌 (枯草芽孢杆菌和恶臭假单胞菌)。这些生物防治剂可单独使用、二元组合使用,也可在不同蚯蚓堆肥应用量下以三元组合使用。实验结束时测量了生长参数,包括茎干湿重、根干湿重和叶绿素指数。结果表明,在两种水平上施用蚯蚓堆肥以及在所有组合处理中接种生物防治剂,显著 (P < 0.001) 改善了感染病原体的植物的生长参数。在两种水平的蚯蚓堆肥和感染镰刀菌的三种生物防治剂组合中获得的大多数研究参数最高,而在蚯蚓堆肥施用和生物防治剂以及感染两种病原体的对照条件下获得的生长参数最低。总体而言,我们的研究结果表明,蚯蚓堆肥和生物防治剂的组合使用在提高番茄植株对根结线虫和镰刀菌的防御能力方面具有显著效果,因此可以提高植株的生长水平。
与植物生命活动密切相关的根部内生微生物的多样性与植物生长阶段有所不同。这项关于稻米jiafuzhan的研究探索了植物生命周期中根部内生细菌和真菌及其动力学的多样性。分别获得了16S核糖核糖核酸(16S rRNA)和内部转录间隔基(ITS)基因,12,154个操作分类学单元(OTUS)和497个Agplicon序列变体(ASV)。使用多样性和相关性分析分析了第一个作物的幼苗,耕作,耕作,接头,标题和成熟阶段,在再生后的13、25和60天(分别在标题,完整的标题和第二个作物的成熟阶段)。在生长阶段的α多样性和β多样性中存在显着差异。此外,线性判别分析(LDA)效应大小(LEFSE)分析显示,每个生长阶段都有生物标志物细菌,但是在每个阶段都不存在生物标志物真菌。相关分析表明,细菌和真菌生物标志物相互作用。此外,在所有生长阶段都存在氮固定属。这些发现表明了在不同生长阶段的ratooon大米的根部内生微生物的模式,并且它们为第二种ratoon大米的高产量提供了新的见解(鉴于各种细菌和真菌的丰度)。