摘要:Passiflora edulis f. flavicarpa(黄色西番莲)是一种高价值热带作物,既可作为水果,也可作为营养品销售。随着美国水果产量的上升,必须研究盐度在半干旱气候下对作物的影响。我们评估了灌溉水盐度、叶龄和干燥方法对叶片抗氧化能力 (LAC) 和植物遗传反应的影响。植物在室外蒸渗仪槽中生长三年,水的电导率分别为 3.0、6.0 和 12.0 dS m − 1。Na 和 Cl 均随着盐度的增加而显著增加;3.0 和 6.0 dS m − 1 下的叶片生物量相似,但在 12.0 dS m − 1 下显著降低。盐度对 LAC 没有影响,但新叶的 LAC 高于老叶。低温烘干 (LTO) 和冷冻干燥 (FD) 的叶子具有相同的 LAC。对十二种转运蛋白基因(其中六个参与 Na + 转运,六个参与 Cl − 转运)的分析表明,根部的表达量高于叶子中的表达量,这表明根部在离子转运和控制叶子盐浓度方面起着关键作用。百香果对盐度的中等耐受性和其高叶子抗氧化能力使其成为加利福尼亚州的潜在新水果作物,也是营养保健品市场的黄酮类化合物的丰富来源。低温烘干是冷冻干燥的潜在替代方案,可用于准备百香果叶子的氧自由基吸收能力 (ORAC) 分析。
摘要根际是植物根直接影响的土壤区域。根际中的微生物群落包括真菌,原生和细菌:所有在植物健康中都起着作用。有益的细菌中西氏细菌在氮含有的豆科植物上感染了根毛。感染会导致根结节的形成,其中Meliloti将大气氮转化为氨(一种可生物利用形式)。在土壤中,经常在生物膜中发现梅洛蒂(S. meliloti),并沿着根部缓慢行进,沿着未感染的根尖生长的根尖端发出根毛。土壤原生生物是根际系统的重要组成部分,能够沿着根和水膜迅速行进,后者捕食土壤细菌,并且已知未消除的吞噬体已知。我们表明,土壤原生物colpoda sp。可以将S. meliloti沿Medicago trunca-tula根传递。使用模型的土壤缩影,我们直接观察到沿截骨根部的流体标记为Meliloti链球菌,并随着时间的推移跟踪了荧光信号的位移。共同接种两周后,当Colpoda sp。也存在与含有细菌但没有生物的治疗方法相比。直接计数还表明,生存细菌需要生存者才能达到我们缩影的更深层。促进细菌运输可能是土壤生物促进植物健康的重要机制。
冬季末期和早春整个州的降雨量接近正常或高于正常水平,除了在正常水平以下的东南部。然而,11月相对干燥,并产生了广泛的表面干燥,东南部表面干燥明显。根部区域的水分水平在整个州的大部分地区都低于正常水平,而该州西半部的深层水分非常低。潜在干燥的模式将防止与土壤接触的灌木丛燃料过夜。这将使火灾即使温度较低并且空气潮湿也可以在一夜之间停留。
1 大小:种植后高度至少为 6-8 英尺,并且应使用 2 英寸卡尺测量离地面 6 英寸的高度。2 数量和位置:应在每个停车区内至少每隔五个停车位种植一棵遮荫树(四舍五入)。在平面图上标明每种树的总数和每种树的位置。3 类型:所选树种应为毛伊县种植计划中列出的适当树种。在选择树种时,需要考虑以下因素:种植区域、预测的树木入侵性、需水量、耐盐耐风性、耐荫性、树种分类、树的大小和海拔。D) 根部屏障:树面向路面或水泥的一侧需要有深度至少为 24 英寸的根部屏障,其位置应在平面图上标明。E) 地被植物:在平面图上标明要在道路两旁的树木周围种植的地被植物的类型。 F) 树篱材料:应以线性方式提供适当的树篱材料和/或土丘以及灌木,以作为视觉屏障。G) 灌溉:所有植物必须由自动灌溉系统灌溉,并在计划中注明。H) 无论停车区的任何部分与划定为住宅或复式用途的物业相邻,都应沿着物业线的相邻部分竖立五英尺高的实心围栏或墙壁。I) 鼓励将景观区纳入雨水管理计划,以增加雨水的补给和渗透。
如今,高级技术变得越来越受欢迎,并涵盖了各个方面以改善我们的日常生活。 在农业中,已经开发出各种技术工具和基于纳米颗粒的肥料1,以促进农业工作并增加农作物的产量。 土壤中各种大量营养素和微量营养素被认为是良好收获的最重要因素。 微量营养素,尤其是氮(N),磷(P)和钾(K),在农作物的栽培和生产中起着重要作用。 2最佳作物产生需要土壤中足够的NPK。 当根部区域内发生NPK de效率时,它可能导致不同类型的综合征,例如叶片的黄度,叶子上的斑点以及降低wos和果实的降低,并且在先前报道的研究中描述了de te的细节。 3 - 5如今,高级技术变得越来越受欢迎,并涵盖了各个方面以改善我们的日常生活。在农业中,已经开发出各种技术工具和基于纳米颗粒的肥料1,以促进农业工作并增加农作物的产量。土壤中各种大量营养素和微量营养素被认为是良好收获的最重要因素。微量营养素,尤其是氮(N),磷(P)和钾(K),在农作物的栽培和生产中起着重要作用。2最佳作物产生需要土壤中足够的NPK。当根部区域内发生NPK de效率时,它可能导致不同类型的综合征,例如叶片的黄度,叶子上的斑点以及降低wos和果实的降低,并且在先前报道的研究中描述了de te的细节。3 - 5
植物的反应可称为向光性,即枝条向光弯曲,或向地性,即根部向重力方向移动。这些反应由激素生长素控制。在向光性中,生长素从枝条有光的一侧移动到无光的一侧,这意味着那一侧的细胞会生长得更多。在向地性中,高浓度的生长素意味着根细胞的生长受到抑制。(仅限 HT)赤霉素也是一种植物激素,它通过分解种子中的食物储存来启动种子发芽过程,并刺激茎的生长。乙烯是另一种控制细胞分裂的激素。
摘要菌根是绿色植物与真菌之间的共生关联。进行了当前的研究,以评估羊膜菌根真菌(AMF)接种对小麦植物种子生长的影响。Triticum Aestivum。在本实验中,用AMF殖民的根被用作注射源。小麦种子被注入这些根,并与其他没有对照注射的种子进行了比较。允许注射的植物和未感染的植物生长75天。在此期间,在三个时期收获了25、50和75天的植物。通过该实验,发现AMF通过对该宿主植物的种子的生长产生积极影响,对小麦作物的生长具有很高的效力。在利比亚,此类AMF的研究仍然很少见,因此我们试图跟进先前的研究,因此我们研究了与利比亚和世界上经济上重要的农作物的这种共存。引用本文。Fheel Alboom H,Khalleefah M,Mansour N,Abounqab A.羊膜菌根真菌对小麦植物生长的影响。Alq J Med App Sci。2024; 7(4):1153-1158。 https://doi.org/10.54361/ajmas.247435简介菌根真菌与它们之间与大多数植物的根部形成一种共生的类型,因为菌根真菌与地球表面上大多数植物的根部相关联,因此[1,2]。真菌菌丝和植物根之间的共生是最常见的共生类型之一[3,4]。由菌根真菌定植的植物称为宿主植物。这些植物包括草药,经济作物以及一些树木,尤其是果树和灌木。植物称为非宿主植物(非宿主植物)[5]。这些真菌在没有宿主植物的情况下无法完成其生命周期,因此在没有宿主植物的情况下,在实验室的人工环境中不能生长或孤立,与某些类型的菌根不同,可以在营养培养基上种植[6,7]。迄今已确定了七种类型的菌根,形成这种关系的真菌属于Ascomycotina,basidiomycotina和glomeromycotina Fungi。菌根真菌最重要的类型是Arbuscular菌根真菌(AMF),它因其对小麦幼苗生长的有效性而被突出显示[8,9]。AMF是自然界中最常见和最普遍的类型,因为它们与80%以上的血管植物建立了共生关系。这些真菌属于独立的分裂肾小球,其特征是在宿主植物根部的皮质细胞内形成(囊泡)和(arbuscules)[10]。真菌菌丝不被横向屏障划分,并通过机械压力或酶在宿主植物根细胞的细胞壁上的机械压力或分泌来渗透宿主的根,并进入表皮细胞之间,它们在
2 Halu Oleo大学食品科学技术系摘要肺癌是一种起源于气道或支气管上皮的主要恶性肿瘤。 癌症的发生的特征是细胞生长不正常,无限和损害正常组织细胞。 在抑制肺癌生长的受体之一是EGFR。 这项研究的目的是确定天然材料化合物作为肺癌药物的酸性抑制剂突变体T790M/C797 EGFR的活性。 这项研究是一项描述性研究计算的描述性研究,是使用配体软件的基于结构性的药物生态学建模方法,使用药物使用Autodock工具软件使用Autodock tocal进行了虚拟筛选和分子张力,该软件具有基于目标参数的根,基于目标参数的根,该词根的根部的根部的根的根的根的根,该根的根的根是根的根的根的根,根的根的根的根的根的根的根的根的根的根的根是>根的根的根的根的根的根的根 EGFR受体代码为5D41,而比较配体为57N。 研究的结果获得了药物模型的验证,即AUC值100%= 0.61,由2个水或h键供体的1个特征组成。 针对椰子数据库的基于药物的筛查可产生270,001个命中化合物。 分子拉伸的结果表明,化合物CNP0179931(3-(4-氯苯基)-n-- [((ochahydro-1H- Quinolizin-1-基)甲基)-1H-Pyrazole-5-5-辅助酰胺具有结合的能量值(ΔG) -1H-pyrazole-5-羧酰胺(2,91 nm,可以得出结论,与天然配体相比,CNP0179931化合物具有更好的结合亲和力值,而基于氢键,Van derawal和Hydropophic Bonds的相似性,可以看到相互作用分析。2 Halu Oleo大学食品科学技术系摘要肺癌是一种起源于气道或支气管上皮的主要恶性肿瘤。癌症的发生的特征是细胞生长不正常,无限和损害正常组织细胞。在抑制肺癌生长的受体之一是EGFR。这项研究的目的是确定天然材料化合物作为肺癌药物的酸性抑制剂突变体T790M/C797 EGFR的活性。这项研究是一项描述性研究计算的描述性研究,是使用配体软件的基于结构性的药物生态学建模方法,使用药物使用Autodock工具软件使用Autodock tocal进行了虚拟筛选和分子张力,该软件具有基于目标参数的根,基于目标参数的根,该词根的根部的根部的根的根的根的根,该根的根的根是根的根的根的根,根的根的根的根的根的根的根的根的根的根的根是EGFR受体代码为5D41,而比较配体为57N。研究的结果获得了药物模型的验证,即AUC值100%= 0.61,由2个水或h键供体的1个特征组成。针对椰子数据库的基于药物的筛查可产生270,001个命中化合物。分子拉伸的结果表明,化合物CNP0179931(3-(4-氯苯基)-n-- [((ochahydro-1H- Quinolizin-1-基)甲基)-1H-Pyrazole-5-5-辅助酰胺具有结合的能量值(ΔG) -1H-pyrazole-5-羧酰胺(2,91 nm,可以得出结论,与天然配体相比,CNP0179931化合物具有更好的结合亲和力值,而基于氢键,Van derawal和Hydropophic Bonds的相似性,可以看到相互作用分析。关键词:肺癌,EGFR,虚拟筛查,分子取
成熟根的横切面可见一大片层状木栓,局部剥落,由矩形、薄壁、切向延长、放射状排列的细胞组成。上面几层充满红棕色内容物。其余细胞无色。皮层是一大片圆形细胞,纤维群朝向中央和中间区域,细胞在某些地方消失。内皮层呈桶状,壁稍厚。中柱鞘和韧皮部不明显。木质部形成由导管、纤维和薄壁组织组成的根部主体。髓射线不明显。导管呈环状或凹陷增厚。纤维壁厚,延长,具有几个简单的凹陷。
能量的单向流动和物质的循环是一般生态学的两大原则(Odum,1963),不仅适用于生物圈及其组成生态系统,也适用于生态系统内的子系统。事实上,生态系统及其子系统只是自然现实的方便抽象。每个子系统的界限无法准确定义,因为许多生物都属于多个子系统。此外,每个子系统都不是孤立存在的,而是与其他子系统相互作用。因此,根微生物系统只是一个概念,它认识到陆地生态系统中能量流动的最重要途径之一是从植物根部直接流向微生物。根微生物系统几乎完全由异养生物组成,因此依赖于外部能量来源,即植物叶子。因此,考虑整个植物的能量流动是适当的。然而,这里不会讨论叶圈的微生物群落。叶子中的自养细胞(在某种程度上,枝条系统的其他部分)将阳光的能量转化为“还原碳单位”的化学能。碳是生物体通过化学键储存和转移能量的载体(Mooney,1972 年)。叶子中合成的大部分富含能量的物质被运输到植物根部,然后运输到微生物。在整个系统中,能量用于生长、繁殖、维持等过程,但根据热力学的经典定律,能量最终会全部消散并从系统中流失。在植物-微生物系统中,会合成许多碳化合物。并非所有这些化合物都会分解为 CO 2 ,甚至不会部分代谢。在某些情况下,热值未知或难以确定。因此,在目前的讨论中,方法将是绘制碳从固定到储存并在系统的不同组成部分中利用的移动。这将间接表明能量通过系统的转移。农学、生态生理学和土壤微生物学的最新进展提供了新的见解