对乐队结构工程的不懈追求仍然是固态研究中的一个基本方面。在这里,我们精心构建了人工kagome的潜力,以生成和控制石墨烯的多个狄拉克带。这种独特的高阶潜在具有自然的多种组件,从而通过不同的潜在贡献来重建带结构。结果,每个以不同的分散体为特征的频带成分,响应人造电势的变化而在不同速度下的能量变化。因此,我们观察到多个狄拉克峰的光谱重量重新分布。此外,磁场可以有效地削弱超晶格效应并重新激活内在的狄拉克带。总的来说,我们实现了分散选择性带工程的积极性,该功能将大大提高频段设计的自由度。
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
近几十年来,科学家掌握了由单个原子或分子层组成的二维晶体的创建。当这些晶体被轻微的偏移或旋转堆叠时,它们会产生大规模的干扰模式,称为Moiré模式。在这样的莫伊尔材料中,电子状态与莫伊尔图案的周期性一致,而不是原始晶体的周期性,对材料的电子特性产生了深远的影响。扭曲的双层石墨烯(TBG),其中两层石墨烯略有扭曲,是这种现象的主要例子。石墨烯是一种二维晶体,该晶体由排列在蜂蜜梳子晶格中的单层碳原子形成。当以特定的扭曲角度堆叠(称为魔法角度)时,TBG具有显着的特性,包括非常规超导性和低能量处的电子带结构的区别。Tarnopolsky,Kruchkov和Vishwanath [TKV19]引入了TBG的手性连续体模型,该模型通过精确地展示了Bloch-Floquet乐队,从而捕捉了TBG魔法角度的这种基本性质。在[bewz21,bewz22]中显示,由于扭曲角度非常小,几乎每个接近零能量的频段基本上都是为此模型的。在本文中,我们研究了Timmel和Mele [TM20]引入的上述手性模型的类似物,其中Moiré-type结构通过应用物理菌株在一个维度中占据一维。虽然此模型确实
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
摘要 - 土耳其的高太阳能潜力是一个重要的优势,有效利用这种潜力将有助于国民经济。在这项研究中,研究了光伏系统(PVS)与智能电网的整合,在确保能源效率方面变得越来越重要。在研究范围内,设计了一个在西瓦斯省有30个家庭的村庄,并且根据村庄中每个家庭的每日能源消耗来计算每天30个家庭所需的电能量。然后,设计了由60个675 wp(瓦特峰)组成的光伏(PV),以满足这种需求。PV已集成到城市网格中,即使光伏不足,也可以满足该村庄的电能需求。为了使这种集成起作用而无需中断,将控制技术添加到集成中并在MATLAB/SIMULINK环境中进行模拟。使用设计的PV,可以看到可以在4月至9月之间满足村庄的整个电能需求,并且可以在10月至3月之间满足这种需求的很大一部分,并且由于集成,可以从网格中提供其余部分。
许可: 本作品已获得 Creative Commons Attribution 4.0 International 许可。阅读完整许可
摘要 - 理解生成AI(Genai)对电网的攻击的潜力是一个基本挑战,必须解决,以通过实现和验证新攻击载体的风险来保护电网。在本文中,提出了一个新颖的零信任框架(PGSC)。该框架促进了对潜在的Genai驱动攻击媒介的早期检测(例如,重播和协议类型攻击),评估基于尾巴风险的稳定性测量方法以及缓解此类威胁。首先,PGSC的新型零信任系统模型被设计和制定为一个零信任问题,该问题旨在通过实现和防御Genai驱动的网络攻击来保证稳定的PGSC。第二,基于域特异性的生成对抗网络(GAN)基于攻击生成机制的开发是为了创建一个新的漏洞网络空间,以进一步了解威胁。第三,基于尾部的风险实现指标是开发和实施的,以量化造成攻击的极端风险,同时利用信任度量方法进行连续验证。第四,设计了基于合奏的Bootstrap聚合方案,以检测与令人信服的用户和分布式能源设备配置文件产生合成身份的攻击。实验结果表明,达到95的准确性的拟议零信任框架的功效。7%的攻击矢量产生,一种风险度量为9。稳定的PGSC的61%,对防御Genai驱动的攻击有99%的信心。
摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
Guillaume Malpuech,H Min Xiao,J,K Yanpeng Zhang,A和Zhaoyang Zhang A, * A XI XI'jiotong University,教育部的物理电子和设备的主要实验室对于复杂系统的理论物理学,大韩民国大韩民国科学技术大学(UST),基础科学计划,大韩民国大道基础科学计划,D莫斯科物理与技术研究所,俄罗斯Dolgoproudnyi,俄罗斯E沃尔夫汉普顿大学,沃尔夫汉普顿大学,沃尔弗尔·汉弗·沃尔弗尔·霍姆斯特·沃尔弗尔·弗里格·沃尔弗尔·伊斯特·弗里格·沃尔夫·伊斯特·沃尔夫汉俄罗斯的彼得斯堡,俄罗斯H.UniversitéClermontAuvergne,Pascal Institut Pascal,Photon-N2,CNRS,CNRS,Clermont INP,France I Institut i Institut Universitaire de France,Paris,Paris,France j法国J大学中国南京
1南部科学技术大学,深圳518055,中国2深圳科学与工程学院,南部科学技术大学,深圳518055,中国318055,3中,中国科学院,中国科学学院,中国3100次,中国科学院,中国科学院,中国科学院31次,科学,科学,科学。中国杭州5理论科学研究所,西湖大学,310024,杭州,中国杭州6吉安省量子材料的主要实验室,汉州科学院物理学系,杭州大学,310030,310030 Luruper Chaussee 149,22761汉堡,德国