a 蜜蜂保护研究所,Julius Kühn 研究所 (JKI) - 联邦栽培植物研究中心,德国不伦瑞克 b 进化生态学和保护基因组学研究所,乌尔姆大学,Albert-Einstein Allee 11,乌尔姆 D-89081,德国 c 动物生态学和热带生物学系,维尔茨堡大学生物中心,维尔茨堡,德国 d 图能生物多样性研究所,Johann Heinrich von Thünen 研究所,林业和渔业,联邦农村地区研究所,德国不伦瑞克 e 自然资源保护研究所,景观生态学,基尔大学,基尔 24118,德国 f 自然保护和景观生态学,弗莱堡大学环境与自然资源学院,Tennenbacher Stra ße 4,弗莱堡,79106,德国 g 生物相互作用和植物健康学部,瓦赫宁根植物研究中心, Droevendaalsesteeg 1, Wageningen 6708 PB,荷兰 h 植物-昆虫相互作用,慕尼黑工业大学生命科学学院,弗赖辛 85354,德国 i 马丁路德哈勒-维滕贝格大学生物研究所,Hoher Weg 8,哈勒(萨勒河)06120,德国 j 德国综合生物多样性研究中心(iDiv)哈勒-耶拿-莱比锡,Puschstrasse 4,莱比锡 04103,德国 k 独立研究员,柏林,德国 l 农业生态学,哥廷根大学,哥廷根,德国 m 动物学研究所,布伦瑞克工业大学,布伦瑞克,德国
抽象的野生蜜蜂是本地和栽培植物的基本传粉媒介,但其种群在全球范围内正在下降。保护工作受到数据不足的阻碍,尤其是在地中海盆地中,该盆地拥有世界上一些最多样化的传粉媒介社区。尤其是在地中海最大的岛屿撒丁岛,关于蜜蜂动物区系的信息仍然有限。这项工作的目的是通过结合传统(基于形态的)分类法和DNA条形码,从东北萨尔迪亚(意大利)中未开发的半岛提供了apoidea anthophila的第一个清单。此外,还提供了鲜花的记录并在访客网络中显示,以丰富有关地中海地区野生蜜蜂与植物之间关联的稀缺数据。蜜蜂从2022 - 2023年4月至2023年10月进行采样。DNA以扩增线粒体基因cyotochrome氧化酶I的序列,然后将其与使用鉴定工具的BOLD进行比较,并通过构造邻居加入的系统发育树。收集并鉴定出属于29属的76种不同的物种和六个家族。对于61种不同的物种,总共获得了212个COI序列,其中许多物种尚未从意大利人群中测序。收集的五个分类单元是萨尔多 - 科尔斯裔人物,而六种是从撒丁岛新记录的。最后,我们重点介绍了潜在的分类问题和新的鲜花访问记录,强调需要进一步研究,以更好地了解这种多样化的昆虫的分类学和生态,以保护其保护。
对妨碍遥感数据解释的因素的敏感性,如土壤背景、地貌、植物的非光合作用元素、大气、观看和照明几何(Huete 和 Justice 1999)最常用的指数是归一化差异植被指数(NDVI),由 Rouse 等人(1974 年)提出,计算为近红外和红光区域反射率差与和的商。由于叶片叶肉的散射,植物的绿色部分在近红外区域反射强烈,并通过叶绿素强烈吸收红光和蓝光(Ayala-Silva 和 Beyl 2005)。NDVI 指数最常用于确定栽培植物的状况、发育阶段和生物量以及预测其产量。 NDVI 已成为最常用的植被指数(Wallace 等人,2004 年;Calvao 和 Palmeirim,2004 年),人们做出了许多努力,旨在开发进一步的指数,以减少土壤背景和大气对光谱测量结果的影响。限制土壤对遥感植被数据影响的植被指数的一个例子是 Huete(1988 年)提出的 SAVI(土壤调节植被指数)。另一个是 VARI 指数(可见大气抗性指数)(Gitelson 等人,2002 年),它大大降低了大气的影响。还有更多的指标被开发出来,来考虑 NIR 和 SWIR 范围内的反射率差异,从而表明植物缺水:MSI(水分胁迫指数)(Rock 等人,1986 年)、LWCI(叶片水分含量指数)(Hunt 等人,1987 年)、WI(水分指数)(Panuelas 等人,1993 年)、GVMI(全球植被水分指数)(Ceccato 等人,2002 年)和 SIWSI(MidIR,G)(短波红外水分胁迫指数)(Fensholt 和 Sandholt,2003 年)。反过来,植被指数,如 CWSI(作物水分胁迫指数)(Jackson 等人,1981 年)、ST(地表温度)(Jackson,1986 年)、WDI(水分亏缺指数)(Moran 等人,1994 年)和 SI(胁迫指数)(Vidal 等人,1994 年)描述了水分胁迫与植物热特性之间的关系。表 1 列出了文献中报告的用于特定农业应用的植被指数示例。
“微藻”一词是指具有光合作用的单细胞细胞,包括来自两个生命领域的生物,即细菌(蓝藻)和来自初级(古藻体)或次级(例如,原生藻)内共生事件的各种真核生物演化支。尽管微藻在分类学上分布广泛,但它们具有一些共同的特征,使它们在某种程度上“相似”。产氧光合作用源自共同的起源,这使得微藻在营养网络中作为初级生产者占有重要地位。它们是单细胞的或形成非常小的菌落,其培养依赖于常见的方法,提供光、二氧化碳、水和营养物质。微藻可产生有价值的分子,如聚糖、脂质、色素、蛋白质等。因此,尽管“微藻”一词在植物学或分类学意义上并不恰当,但它在生态学和人类工业中有着其合法的含义。这既是将知识从一种生物体转移到另一种生物体时的弱点,也是解决类似生物技术问题时的优势。过去十年,发展以微藻为基础的产业已成为一项社会挑战。气候紧急情况和耕地压力使得每天对新型无碳和可持续生产的需求更加迫切。应用范围从食品、健康、绿色化学到生物燃料,有望利用从大气或碳排放行业捕获的二氧化碳生产生物分子。在这种背景下,“藻类行业”应运而生,聚集了专门从事藻类培养、收获、提取工艺和生物精炼的参与者。将野生藻类菌株转化为“藻类作物”,即“驯化”微藻,代表着一项艰巨的任务,因为可能存在感兴趣的初始特征,如相对较高的油、碳水化合物、色素等,但提高、可重复和可扩展产量的道路极具挑战性。农业领域可以吸取一些经验教训,为微藻领域的研究提供新的刺激。当人们在大自然中行走时,他或她会发现类似小麦、玉米、番茄、向日葵、油菜籽等的野生植物吗?与野生植物相比,农作物看起来又大又胖。此外,收获后,栽培种子很少逃逸并入侵未开垦地区。因此,植物驯化侧重于生产力和质量,而不是与野生群落竞争的适应性。野生植物和驯化植物之间的巨大差异表明,其他生命分支也应该可以获得产量的提高,请记住,栽培植物是二倍体,而目前大多数栽培的微藻是单倍体。
ENHANCING SUSTAINABILITY IN LATVIA *Inese Skapste , Gunta Grīnberga-Zālīte , Aina Dobele Lavia University of Life Sciences and Technologies, Latvia *Corresponding author's e-mail: inese.skapste@gmail.com Abstract One of the main objectives for the Baltic Sea regions is the harmonisation of the economic development and environmental sustainability.将知识密集型生物经济性鉴定为拉脱维亚智能专业策略(RIS3)的主要领域之一,这表明向拉脱维亚发展的可持续和气候中性方法过渡。该战略旨在促进对自然资源的更可持续和有效地利用自然资源,以创造高额价值,以促进与环境保护的出口和经济利益的协调。这是一个多方面且复杂的过程。需要一种科学的声音方法来开发最合适的解决方案。本文研究了藻类生物量,这是在可持续性的拉脱维亚农业中可再生资源的潜力。该研究旨在探索波罗的海藻类作为拉脱维亚的可持续农业资源的潜力,重点是研究期间对耕种的影响。通过在两个阶段进行实际研究来评估潜力。该研究的结果证实了波罗的海藻类作为拉脱维亚的农业资源的潜在用途,这需要进一步评估液体消化分数对作物绿色质量的影响,以确定其使用藻类生物量在农业中的潜在适用性。关键词:藻类,波罗的海,农业资源,可持续发展,拉脱维亚。在基于知识的生物经济性(KBBE)的背景下进行了简介,价值链包括与生物经济部门相关的经济活动的组织,包括使用知识流,创新和生物量循环的使用。生物经济旨在为传统上基于不可再生资源的产品组创建新的价值链,例如石油,天然气,煤炭,化学物质等。然而,在生物经济的全球价值链中通常优先考虑短期利润和全球化的生产,这可能会阻碍生物质循环的使用。为了获得可持续和循环的生物经济性,传统的线性价值链(Kircher,2021; Grinberga-Zalite&Zvirbule,2022)需要进行修改和改编。正在引起人们的注意,以实施不同价值链的循环生物经济原则。生物经济的核心要素是综合价值链的形成和预防部门的障碍,强调了价值链控制可持续性的重要性(Aggestam&Giurca,2022)。拉脱维亚共和国农业部提出了解决农业部门问题的措施,强调需要创新,可持续性和有效的供应链。这些措施是对几个问题的答案,包括生产成本上升,低收益率,人力短缺和未来的不确定性(OECD,2019年)。解决农业部门的问题需要在多学科环境中采用综合方法。这项研究的目的是分析波罗的海藻类作为拉脱维亚的可持续农业资源的潜力,并在研究期间评估其对栽培植物的影响。为了实现研究的目的,起草了以下任务:1)在
1)玻利维亚阿尔蒂普拉诺(Altiplano)是世界第二大和最高高原的玻利维亚阿尔蒂普拉诺(Altiplano),是中央安第斯干puna Ecoregion的一部分。这种高海拔,干旱的山地生态系统具有独特的植物区系和动物群,适应极端条件,包括高太阳辐射,强风和明显的温度波动。降雨量高度可变,每年从80至700毫米不等。植被包括两种主要的灌木丛类型,以Fabiana densa和parastrephia物种为主,而Sandy Dunes则拥有其他灌木丛类型。该地区也是重要物种的所在地,例如依靠高地湿地和南美骆驼的候鸟,其中包括驯养物种(喇嘛格拉马和喇嘛帕科斯)和野生物种(vicugna vicugna vicugna和lamaicoe)。值得注意的是,Altiplano包含两个Ramsar遗址:Titicaca和Poopólakes。虽然安第斯地区以其显着的生物学多样性而闻名,并且作为许多栽培植物的重要起源中心,但该地区自相矛盾的是,贫困和营养不良水平很高,玻利维亚高原1中最高水平。该国24%的市政当局属于有关粮食安全的高脆弱性类别。在2017年至2024年之间,在IFAD的支持下,玻利维亚实施了Procamélidos1计划(P1),这是一项旨在加强Altiplano Camelid Value Chain的3880万美元倡议。基于P1成功的基础,该计划着重于改善初级生产和可持续资源管理,处理和营销以及为贫困家庭获得金融服务。它认识到骆驼在当地经济中的关键作用,并解决了影响其生产的环境挑战。主要投资包括用于自然牧场恢复,保护捕食者和幼苗移植以增加植被覆盖率的多功能外壳。此外,基础设施的改进确保了通过井,坦克和太阳能泵的持续进入水。覆盖的结构是为了保护骆驼群,尤其是在极端天气事件中,并存储补充饲料。农业生态图和分区,以评估环境风险和指导投资决策。通过解决气候变异性和栖息地退化的影响,Procamélidos计划有助于自然资源的可持续管理和维护Altiplano的生物多样性,从而支持当地经济和环境。还采取了行动,以改善骆驼生产者获得更健康的饮食习惯并增强最脆弱的能力,重点是增强青年和妇女权能,进一步促进农村转型。在2024年,联合国宣布了国际骆驼的年(IYC 2024),以强调骆驼是如何在世界各地敌对环境中,尤其是土著人民和地方社区的敌对环境中数百万家庭生计的关键。在这种情况下,在P1的成就上,玻利维亚和IFAD政府启动了Procamélidos2计划(P2)的准备,将在2025年开始在10年内以3个阶段实施。总成本为26.94美元。该提案目前处于概念注释阶段,并包括以下技术组件: