钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
社会昆虫建立坚固的巢穴,以物理捍卫其殖民地免受捕食者的攻击以及寄生虫和病原体的侵入。虽然许多先前关于白蚁巢的研究都集中在其身体防御功能上,但它们的巢也具有各种微生物,这些微生物在维持殖民地的卫生环境中发挥作用。在这项研究中,我们报告了白蚁巢的动态防御机制,白蚁将病原体感染的尸体埋入巢穴,增强了巢穴中共生细菌提供的抗菌防御。白蚁将病原体感染的尸体掩埋,可能构成高致病风险,而它们的嵌入材料则无感染的尸体。在埋葬尸体的巢材料中,链霉菌的丰度,抗生素产生的细菌增加并增强了巢材料的抗真菌活性。此外,该链霉菌抑制了白蚁病原体的生长,并在存在这些病原体的情况下提高了工人的存活率。这些结果表明,由尸体埋葬促进的白蚁与巢相关的共生细菌之间的相互作用有助于连续维持巢穴卫生。这项研究阐明了巢的功能作为“生活防御壁”,并增强了我们对社会昆虫采用的动态病原体防御系统的理解。
实际上,GPS 参考站数据从桁臂到 TDP 的转换是使用两点之间假定的已知基线向量(例如从调查中获得)、船舶姿态知识以及船舶为刚体的假设来完成的。
真正的 3D 嵌套是 EBM 打印如此高效的原因。虽然电子束非常快(单个电子束可以同时保持多达 70 个熔池“活跃”),但需要时间将构建空间加热到其工作温度。但一旦达到温度,EBM 就可以打印从构建板到构建包络顶部的零件堆栈。这大大降低了生产每个零件所需的平均时间。一次运行的零件越多,EBM 的生产力就越高。
众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。
在过去的几十年中,植物生物技术的进步允许开发转基因的玉米品种,这些品种显着影响了农业管理并改善了全球的谷物产量。迄今为止,转基因的品种占世界玉米培养区域的30%,并结合了除草剂,昆虫和疾病耐药性,非生物胁迫耐受性,高产量和提高的营养质量等性状。玉米转化是转基因玉米发展的先决条件,不再是主要的瓶颈。使用形态调节剂的方案已显着发展,以增加转化频率和基因型独立性。使用稳定或瞬态表达和组织培养方法的新兴技术,例如使用RNA引导的内核酸酶系统作为一个体内所需的靶标的突变器,同时双倍型产生和编辑/单倍倍倍倍型诱导者介导的基因组介导的基因组编辑和plulen presection sextres sextress sex sepress,本综述总结了玉米转换方案,技术和应用的重大进展,并讨论了当前状态,包括针对特征发展的管道以及与当前和未来的基因和遗传修改和遗传编辑的玉米品种有关的调节问题。
吴玉成现为合肥工业大学特聘教授、博士生导师。2000年获中国科学院凝聚态物理博士学位。目前的研究兴趣主要集中在聚变材料、能源相关材料和功能纳米材料上。他曾在世界各地担任各种学术职务,包括圣安德鲁斯大学名誉教授(2013-)、皇家墨尔本理工大学客座教授(2012-)、中国微米纳米技术学会理事(2012-)、国家先进能源环境材料国际科技合作基地主任(2017-)。他在Science Advances、Advanced Materials、Advanced Functional Materials、ACS Nano等期刊上发表了300多篇同行评议科学论文,总引用次数超过12 000次。
概述 本活动使用塞伦盖蒂生态系统的一个例子来说明植物、动物和环境之间的营养交换。 塞伦盖蒂作为案例研究可以教授许多生态学概念。 这是一个丰富多样的栖息地,人们进行了大量研究来解释生物如何相互影响以及与环境如何相互作用。 本活动以典型的稀树草原草和角马为例,重点介绍碳、氮和磷的循环。 在观看简短的介绍视频后,学生使用卡片活动来了解塞伦盖蒂营养循环中的一些过程。 然后,他们通过小组讨论和完成额外的讲义来反思这些过程。 讲义有两种版本,根据对学生所需的先验知识量而有所不同。
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
