Corus Bi-Steel 赢得了其在英国的首份 Corefast 预制核心系统合同。它将为曼彻斯特的 Forty Springardens 办公楼开发项目提供电梯和楼梯核心。这个 9,385 平方米的投机办公楼开发项目将有两层地下室和九层地上建筑。Langtree 是开发商,Balfour Beatty Construction 是总承包商。Corefast 将用于提供一个四排中央电梯核心和一个单独的电梯和楼梯组合核心,贯穿地下室和地上前六层。上面三层将采用传统的支撑钢框架建造。施工将于 11 月开始。Corefast 使用 Corus Bi-Steel 面板,这种面板由成对的钢板组成,通过一系列钢筋连接,然后在现场填充混凝土。Balfour Beatty 的开发项目经理 Rob Todd 表示:“Corefast 的规范将大大简化这个项目的供应链。由于核心筒以预制模块的形式运送到现场,该系统将提供显著的时间、劳动力和设备利用率优势。”繁忙的市中心也将减少拥堵,高空作业的需求也将减少。第一个使用 Corefast 的项目是位于都柏林附近价值 2.76 亿英镑的 Dundrum 镇中心开发项目,该项目在五个工作日内完成了六层核心筒的建设(NSC 2005 年 2 月)。Forty Springardens 由 Aedas Architects 设计。结构工程师是
Corus Bi-Steel 赢得了其在英国的首份 Corefast 预制核心系统合同。它将为曼彻斯特的 Forty Springardens 办公楼开发项目提供电梯和楼梯核心。这个 9,385 平方米的投机办公楼开发项目将有两层地下室和九层地上建筑。Langtree 是开发商,Balfour Beatty Construction 是总承包商。Corefast 将用于提供一个四排中央电梯核心和一个单独的电梯和楼梯组合核心,贯穿地下室和地上前六层。上面三层将采用传统的支撑钢框架建造。施工将于 11 月开始。Corefast 使用 Corus Bi-Steel 面板,这种面板由成对的钢板组成,通过一系列钢筋连接,然后在现场填充混凝土。Balfour Beatty 的开发项目经理 Rob Todd 表示:“Corefast 的规范将大大简化这个项目的供应链。由于核心筒以预制模块的形式运送到现场,该系统将提供显著的时间、劳动力和设备利用率优势。”繁忙的市中心也将减少拥堵,高空作业的需求也将减少。第一个使用 Corefast 的项目是位于都柏林附近价值 2.76 亿英镑的 Dundrum 镇中心开发项目,该项目在五个工作日内完成了六层核心筒的建设(NSC 2005 年 2 月)。Forty Springardens 由 Aedas Architects 设计。结构工程师是
我们推出了 Cascade。在 2022 年 7 月的范堡罗国际航空展上,我们宣布推出 Cascade 并现场演示了 1.0 版。Cascade 的开发旨在直观展示全球航空业对气候的影响,并探索到 2050 年最有效地实现商用航空脱碳的方案:机队更新、运营效率、可持续航空燃料 (SAF) 和新航空技术,例如跨音速桁架支撑机翼结构、混合动力、全电动或氢动力飞机。该工具使整个行业的利益相关者(尤其是客户和政策制定者)能够就如何最好地实现商用航空业 2050 年净零排放目标做出明智的决策和权衡。我们期待最近公开发布的更多反馈,并将继续通过与社区创始成员合作对 Cascade 进行投资,这些成员包括国际航空运输协会、美国国家航空航天局、剑桥大学惠特尔实验室和麻省理工学院航空与环境实验室。
引言 可部署的空间网状反射器天线已得到广泛应用,孔径为 10 - 20 m[1-3]。标准的可部署结构是 AstroMesh,它由双曲缆网组成,由可部署周边桁架支撑[4,5]。这种特殊的反射器设计已成功实现质量和体积效率[6-9]。可部署结构必须满足运载火箭的质量和体积限制,以及发射期间动态环境施加的负载限制。使用现有的运载火箭无法发射存放高度超过 20 m 的结构[10]。因此需要在太空建造极大的结构。许多研究人员已经研究了空间组装 (ISA) 技术。ISA 需要:功能元素的模块化和在太空组装单独模块的策略。开发 ISA 架构将为在太空环境中建造大型结构提供新方法[11,12]。使用 ISA 建造大型功能结构的概念[10]包括 RAMST[13]和 ALMOST[14],这两个概念都是在太空组装的模块化空间望远镜。在当前的研究中,我们考虑在太空中建造具有特定架构的反射器,如图 1 所示。反射器由两个相同的近似于抛物面的索网组成。反射面连接到前网上。拉力带安装在前后网之间,对电缆施加预应力。前后网都连接到周边桁架。反射器的设计类似于可展开的 AstroMesh,但概念实现现在支持在太空中组装,而不是从收起配置展开。本文的结构如下:我们首先设计反射器的几何形状和结构。然后计算孔径高达 200 米的质量和存放体积,以评估所提议的反射器的发射极限。然后,我们提出了一种空间组装方案,该方案能够使用集中式机器人系统组装大型反射器。实验室规模的原型用于演示所提议的组装程序。