1中国科学院生命科学学院,中国北京101408; zhaoxiaoy@genomics.cn 2拉尔斯·博伦德(Lars Bolund)再生医学研究所,金丁欧(Europe)高级生命科学研究所,bgi-qingdao,bgi-shenzhen,qingdao 2666555,中国; qukunli@genomics.cn(K.Q. ); yanghm@genomics.cn(H.Y. ); bolund@biomed.au.dk(L.B.) 3 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C. ); lin.lin@biomed.au.dk(L.L.) 4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。 : +45-224119441中国科学院生命科学学院,中国北京101408; zhaoxiaoy@genomics.cn 2拉尔斯·博伦德(Lars Bolund)再生医学研究所,金丁欧(Europe)高级生命科学研究所,bgi-qingdao,bgi-shenzhen,qingdao 2666555,中国; qukunli@genomics.cn(K.Q.); yanghm@genomics.cn(H.Y.); bolund@biomed.au.dk(L.B.)3 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C. ); lin.lin@biomed.au.dk(L.L.) 4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。 : +45-224119443 Aarhus大学生物医学系,丹麦8000 Aarhus; benedetta.curci@outlook.it(B.C.); lin.lin@biomed.au.dk(L.L.)4 Department of Biology, Copenhagen University, 2200 Copenhagen, Denmark 5 HIM-BGI Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China 6 Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark * Correspondence: alun@biomed.au.dk;电话。: +45-22411944
图2为直接能量沉积过程中单通道单层熔覆层的外观图及相应时刻的熔池XZ截面和YZ截面图(红色虚线框内为XZ截面,黑色虚线框内为YZ截面)。从图2(a)可以看出,t=0.13时基体处于预热状态,这是为了保证粉末颗粒在熔池中初步完全熔化。由图可知,热源作用于基体时,基体受热比较均匀,热影响区具有很高的对称性,说明高斯热源在数值模型中具有良好的效果。随着金属粉末颗粒进入熔池,熔覆层逐渐形成,熔池最高温度可达3000K左右,如图2(b)所示。
在模型植物系统中,b-酮酰基-[酰基载体蛋白]合酶 1 (KASI) 基因已被证明对蔗糖转化为油至关重要。先前的一项研究描述了与相互染色体易位相关的形态和种子组成表型,这种易位破坏了大豆中的一种 KASI 基因。这项研究的主要发现包括种子起皱表型、种子蔗糖增加、种子油减少和易位传播频率低。然而,仍不清楚这些表型中的哪一个(如果有的话)是由 KASI 基因功能丧失直接引起的,而不是染色体易位或其他相关因素。在本研究中,使用 CRISPR/Cas9 诱变来生成该基因的多个敲除等位基因,以及一个符合读框的等位基因。对这些大豆植物的形态、种子组成性状和遗传传递进行了评估。我们的结果表明,CRISPR/Cas9 突变体表现出与染色体易位突变体相同的表型,证实了观察到的表型是由基因功能丧失引起的。此外,与含有纯合敲除突变的植物相比,含有纯合框内突变的植物表现出相似的表型。这一结果表明,框内突变体中丢失的氨基酸对于基因的正常功能至关重要。为了产生新的种子组成表型,该基因的框内编辑可能需要靶向不太重要和/或进化保守的结构域。
天然生长素吲哚-3-乙酸 (IAA) 是植物生长发育诸多方面的关键调节剂。合成生长素除草剂(如 2,4-D)可通过诱导植物产生强烈的生长素信号反应来模拟 IAA 的作用。为了确定印度篱芥(Sisymbrium orientale)杂草种群对 2,4-D 的抗性机制,我们对 2,4-D 抗性 (R) 和易感 (S) 基因型进行了转录组分析,结果显示在生长素辅助受体 Aux/IAA2 (SoIAA2) 的降解子尾 (DT) 中存在 27 个核苷酸的框内缺失,从而删除了 9 个氨基酸。在重组自交系中,缺失等位基因与 2,4-D 抗性共分离。此外,在该物种的几个 2,4-D 抗性田间种群中也检测到了这种缺失。表达 SoIAA2 突变等位基因的拟南芥转基因株系对 2,4-D 和二甲苯具有抗性。IAA2-DT 缺失降低了天然和合成生长素与 TIR1 的体外结合,导致结合率降低和解离率增加。这种合成生长素除草剂抗性机制赋予了这种 Aux/IAA 辅助受体的 DT 区域在植物体内的功能,以发挥其在合成生长素结合动力学中的作用,并揭示了一种使用基因编辑生产合成生长素抗性作物的潜在生物技术方法。
1-1:线框内克尔立方体................................................................................................1 1-2:内克尔立方体详述...............................................................................................3 1-3:内克尔立方体解析...............................................................................................4 1-4:传导.......................................................................................................................20 1-5:感知.......................................................................................................................23 1-6:认知.......................................................................................................................23 1-7:发音.......................................................................................................................25 1-8:话语.......................................................................................................................26 1-9:档案(非时间模型).............................................................................................32 2-1:斯蒂尔转录样本.....................................................................................................85 2-2:帕尔默的六种音调模式.....................................................................................95 2-4:音调模式生成器的实际应用................................................................................124 2-5:基线单位................................................................................................127 2-6:焦点、预设和断言..............................................................................155 3.8:直接图像比例符号(Ø)................................................................175
1-1:线框内克尔立方体................................................................................................1 1-2:内克尔立方体详述...............................................................................................3 1-3:内克尔立方体解析...............................................................................................4 1-4:传导.......................................................................................................................20 1-5:感知.......................................................................................................................23 1-6:认知.......................................................................................................................23 1-7:发音.......................................................................................................................25 1-8:话语.......................................................................................................................26 1-9:档案(非时间模型).............................................................................................32 2-1:斯蒂尔转录样本.....................................................................................................85 2-2:帕尔默的六种音调模式.....................................................................................95 2-4:音调模式生成器的实际应用................................................................................124 2-5:基线单位................................................................................................127 2-6:焦点、预设和断言...............................................................................155 3.8:直接图像比例符号 ( � )........................................................................175
图 3:HBV-ARCUS-POL 核酸酶在各代中表现出更高的特异性 • 含有一个部分整合的 HBV 基因组的 HepG2 细胞被转染了高水平的 HBV-ARCUS- POL 核酸酶以及 DNA“标签”。分离 gDNA 并使用 Oligo Capture NGS 评估脱靶编辑。 • 每个蓝点代表一个潜在的切割位点,X 轴表示恢复的读取次数,点的颜色表示每个位点与预期的 22bp 目标位点相比的错配数。 • 最有可能真实的脱靶位点是那些具有大量读取次数或错配较少的位点。这些包含在黄色轮廓框内。橙色圆圈表示已整合到 HepG2 细胞系基因组中的预期目标位点。
摘要。背景/目标:进行了这项研究,以评估面板下一代测序(NGS)的临床实用性,并研究遗传改变的频谱及其在神经母细胞瘤中的临床意义。患者和方法:来自41例神经母细胞瘤病例的福尔马林固定的,被填充的档案样品用于靶向测序。结果:总共确定了145个体细胞突变,包括51个同义词,86个错义,3个废话,2个Frameshift删除,2个剪接位点和1个框内缺失突变。最常见的突变基因是碱(9个错义突变)。公共拷贝数变化(CNV)在2p24.2处放大,并在11q22.3和1p36.21处删除。ALK突变在4S或4S的患者中更常见(0%vs. 33.3%,P = 0.017)。在27例高风险疾病患者中,5-
封面:第 58 特种作战联队的徽章于 1942 年 8 月 10 日首次获准由第 58 战斗机大队使用。联队于 1952 年 11 月 18 日获准使用此徽章作为其官方徽章。徽章:天蓝色,从云层中升起,上方是希腊神话女神阿尔忒弥斯的形象,右手握弓,左手伸向箭筒中的箭,骑在由两只鹿拉着的战车上,全是金棕色,饰有 Tenné(金橙色),所有这些都在第二只鹿的缩小边框内。盾牌下方附有白色卷轴,边缘有狭窄的黄色边框,上面用蓝色字母刻有“第 58 特种作战联队”。意义:群青和空军黄是空军的颜色。蓝色代表天空,是空军作战的主要战场。黄色代表太阳和空军人员所需的卓越素质。女神阿尔忒弥斯或戴安娜是朱庇特的女儿,是奥林匹亚狩猎女神。她总是能从冒险中成功归来。
NR2E3 编码一个孤儿核受体,该受体在光感受器中起转录激活剂和抑制剂的双重功能,是视锥细胞命运抑制以及视杆细胞分化和体内平衡所必需的。该基因突变会导致色素性视网膜炎 (RP)、增强型 S 视锥综合征 (ESCS) 和 Goldmann-Favre 综合征 (GFS)。据报道,一种 Nr2e3 异构体包含所有 8 个外显子,第二种 — 以前未报道 — 较短的异构体仅跨越前 7 个外显子,其功能仍然未知。在这篇数据文章中,我们通过使用 CRISPR/Cas9-D10A 切口酶靶向 Nr2e3 的外显子 8 设计并生成了两种新型小鼠模型,以剖析这两种异构体在 Nr2e3 功能中的作用并阐明 NR2E3 突变引起的不同疾病机制。这种策略产生了几个经过修饰的等位基因,改变了最后一个外显子的编码序列,从而影响了转录因子的功能域。等位基因 27 是 27 bp 的框内缺失,消除了二聚化域,而等位基因 E8(外显子 8 的完全缺失)只产生了缺乏二聚化和抑制域的短同种型。两者的形态和功能改变