1 普渡大学电气与计算机工程学院,美国印第安纳州西拉斐特 47906 2 普渡大学 Birck 纳米技术中心,美国印第安纳州西拉斐特 47906 3 伊利诺伊大学香槟分校电气与计算机工程系,美国伊利诺伊州厄巴纳 60801 4 伊利诺伊大学香槟分校 Nick Holonyak, Jr. 微纳米技术实验室,美国伊利诺伊州厄巴纳 61801 5 普渡大学物理与天文系,美国印第安纳州西拉斐特 47906 6 英特尔公司组件研究部,美国俄勒冈州希尔斯伯勒 97124 7 普渡大学普渡量子科学与工程研究所 (PQSEI),美国印第安纳州西拉斐特 47906 8 奥胡斯物理与天文研究所和 Villum 混合量子材料与器件中心大学,8000 奥胡斯-C,丹麦 9 东北大学 WPI-AIMR 国际材料科学研究中心,仙台 980-8577,日本 10 量子科学中心 (QSC),美国能源部 (DOE) 国家量子信息科学研究中心,橡树岭国家实验室,美国田纳西州橡树岭 37831
在过去的几十年里,人们对利用不同密度泛函研究量子力学系统的兴趣日益浓厚。信息论 [1] 提供的强大工具的使用受到了特别的关注,该工具旨在根据系统的代表性或特征概率分布对系统进行精确描述。这些工具的应用范围广泛,包括复杂程度各异的物理和化学对象,从少粒子系统 [2] 到结构复杂的分子 [3,4],再到多电子原子和离子 [5,6]。此外,对于给定系统,我们通常可以根据所追求的精度水平以及所考虑的变量来考虑不同的描述模型。在时间独立的量子力学框架中,对给定状态下的单粒子或多粒子系统的完整描述,需要了解相应的波函数 (r 1 , . . . , rn ),它是特征值方程的相应解
摘要 飞行颤振试验是任何新飞机项目认证过程不可或缺的一部分。颤振测试是扩展包线的主要条件。本文总结了自主研发战斗机的颤振试验项目,旨在批准其基准配置的作战飞行包线。颤振清除方法结合了飞行前颤振分析和飞行颤振测试。扩展至全包线是沿着恒定马赫数和/或恒定 CAS 线的离散步骤组合完成的。通过处理飞行颤振试验数据并确保阻尼系数满足基于适航标准得出的清除标准,计算各种全局飞机模式的频率和阻尼系数(%g),从而获得清除。试验结果表明,正如分析估计所预测的那样,飞行包线无颤振。从设计师的角度概述了颤振清除理念、试验程序和飞行试验期间遇到的挑战。
秘书处:生命科学行业促进办公室,工业促进部,千叶县工商业部,电话:043-223-2725电子邮件:sangyo-b@mz.pref.chiba.chiba.lg.jp.jp.jp
(1)JISS ..... 5(2)人类基因组和基因分析研究的目的与运动医学和科学领域有关在JISS上传播有关与运动医学和科学领域有关的人类基因组和基因分析研究的信息..... 9 3.研究人员等的责任在JISS运动医学与科学领域从事人类基因组和遗传分析研究。 .... 9 4。在JISS运动医学和科学领域进行人类基因组和遗传分析研究时,要遵循的指南和其他准则。...11 5.在JISS的运动医学和科学领域进行人类基因组和遗传分析研究时要注意的事情..... 11
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
进行了一项分析研究,以确定 2.7 马赫箭翼超音速巡航飞机主机翼和机身结构设计的最佳结构方法。考虑近期开始设计来评估概念。重点放在热应力、静态气动弹性、颤振、疲劳和故障安全设计、静态和动态载荷之间的复杂相互作用,以及结构布置、概念和材料变化对这些相互作用的影响。结果表明,采用钛合金 6A1-4V 的低轮廓凸珠和蜂窝夹层表面板的混合机翼结构效率最高。下部结构包括用硼-聚酰亚胺复合材料加固的钛合金翼梁帽。机身外壳由 6 ~ - 4 v 钛合金帽形加固蒙皮和框架结构组成。本报告总结了研究成果,并讨论了超音速巡航飞机设计的整体研究逻辑、设计理念和分析方法之间的相互作用。
摘要。通常,复杂航空航天部件的超声波检测采用喷射技术。然而,水耦合会带来压力变化、气泡、水垢、藻类和机械腐蚀等缺点。因此,最好采用非接触式技术,以避免这些缺点。空气耦合超声波技术可以通过特殊传感器结合特殊发射器和接收器技术来减少空气和固体之间的巨大声学失配。尽管进行了这些优化,但测试频率必须低于 1 MHz。已经发表的研究表明,低超声频率对于检查 CFRP 夹层部件(即使使用水耦合)是必要的。空气耦合超声波检测技术已经适用于测试 CFRP 蜂窝夹层结构。由于传感器在复杂部件的相对侧垂直对齐,因此需要十轴机器人扫描系统。本文介绍了欧洲直升机公司自 2011 年起在多瑙沃特运行的自动空气耦合机器人超声波成像系统的初步结果和细节。该项目是欧洲直升机公司德国分公司、Robo-Technology、EADS Innovation Works、Ing. Büro Dr. Hillger 和 Ostertag 之间的合作项目。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为