抽象的梭状芽胞杆菌艰难梭菌感染(CDI)是医院获得性腹泻的主要原因,这通常是由于广谱抗生素破坏了肠道菌群的破坏。抗生素耐药性艰难梭菌菌株的患病率不断增加,加上最近抗生素候选物的令人失望的临床试验结果,强调了对新型CDI抗生素的迫切需求。为此,我们研究了艰难梭菌Enoyl ACP还原酶(CD Fabk),这是一种从头脂肪酸合成中的至关重要的酶,是用于抗微生物组抗生素的药物靶标。为了测试这一概念,我们评估了苯基咪唑类似物296的活性的功效和体内谱,该光谱已验证以抑制细胞内CD Fabk。的抑制浓度最小(MIC 90)为2 µg/ml,与Vanymoncin(1 µg/mL)相当,这是一种护理抗生素标准。此外,有296个达到了高结肠浓缩,并在CDI结肠炎中显示出剂量依赖性疗效。给出了296个对艰难梭菌的定殖耐药性,并具有与未处理的小鼠相似的微生物组。相反,万古霉素和虚拟霉素都以与先前的报道一致的方式对小鼠微生物组诱导了显着变化。CD Fabk代表了占微生物组的CDI抗生素的潜在靶标,而苯基咪唑为设计这种剂提供了一个很好的化学起点。
Callogenesofene是用于体外次生代谢产生和间接器官发生的最强大的生物技术方法之一。可以通过应用机器学习(ML)和优化算法的组合来获得对呼应和优化方案的全面知识。在当前的研究中,p的call灭响应(即call灭率和愈伤组织新鲜重量)。caerule。使用多层感知器(MLP)。此外,将开发的模型集成到遗传算法(GA)中,以优化PGRS和Explant类型的浓度,以最大程度地提高卡尔生成反应。此外,进行了敏感性分析,以评估每个输入变量对卡尔生成响应的重要性。结果表明,在训练和测试集中,MLP具有高预测精度(R 2> 0.81),用于建模所有研究参数。基于优化过程的结果,将从补充有0.52 mg/l IBA的培养基中培养的叶植物中获得最高的卡生成率(100%),加上0.43 mg/l NAA,加上1.4 mg/l 2,4-D 2,4-D Plus 0.2 mg/l bap。敏感性分析的结果表明,PGRS外源应用对call菌的外源性的影响。gentally,结果表明,MLP和GA的组合可以显示出具有前瞻性的辅助工具,以优化和预测体外培养系统,并因此应对巴西列拉组织培养中目前面临的几个挑战。
人类肠道的治疗评估。2作者:Alex Carr 1,2,Nitin S. Baliga 1,2,3,4,Christian Diener 1,5,**和Sean M. 3 Gibbons 1,2,6,7,* 4隶属关系:5 6 1 1 6 1 Systems Biology Institute for Systems Biology,Seattle,西雅图,西雅图,华盛顿州西部,美国华盛顿州,美国7 2分子工程学计划 Seattle, WA, USA 9 4 Lawrence Berkeley National Lab, Berkeley, CA, USA 10 5 Diagnostic and Research Institute of Hygiene, Microbiology and Environmental 11 Medicine, Medical University of Graz, Graz, Austria 12 6 Departments of Bioengineering and Genome Sciences, University of Washington, 13 Seattle, WA, USA 14 7 eScience Institute, University of Washington, Seattle, WA, USA 15 * correspondence can be addressed to cdiener@isbscience.org和162作者:Alex Carr 1,2,Nitin S. Baliga 1,2,3,4,Christian Diener 1,5,**和Sean M. 3 Gibbons 1,2,6,7,* 4隶属关系:5 6 1 1 6 1 Systems Biology Institute for Systems Biology,Seattle,西雅图,西雅图,华盛顿州西部,美国华盛顿州,美国7 2分子工程学计划 Seattle, WA, USA 9 4 Lawrence Berkeley National Lab, Berkeley, CA, USA 10 5 Diagnostic and Research Institute of Hygiene, Microbiology and Environmental 11 Medicine, Medical University of Graz, Graz, Austria 12 6 Departments of Bioengineering and Genome Sciences, University of Washington, 13 Seattle, WA, USA 14 7 eScience Institute, University of Washington, Seattle, WA, USA 15 * correspondence can be addressed to cdiener@isbscience.org和16
摘要:锌离子电池(ZIBS)由于其出色的安全性,低运营成本和环境优势而获得了非常有前途的可充电电池的认可。尽管如此,与水解物相关的固有挑战(包括水分解反应,蒸发和液体泄漏),固定的挑战阻碍了Zibs储能的广泛利用。幸运的是,固态电解质研究的最新进展在解决这些挑战方面具有巨大的潜力。此外,固态电解质的灵活性和新化学性质为其在可穿戴电子设备和多功能设置中的应用提供了更多机会。尽管如此,尽管近年来基于固态电解质的齐布斯的流行日益普及,但固态电解质的发展仍处于早期阶段。弥合存在的巨大差距在固态Zib成为实际现实之前至关重要。本评论介绍了各种类型的ZIB固态电解质的进步,包括纤维分离器,无机添加剂和有机聚合物。此外,它讨论了固态电解质的性能和影响。最后,它概述了固态Zibs开发的未来方向。
摘要:时间序列分类是数据挖掘中的一个具有挑战性且令人兴奋的问题。根据时间序列进行了分类和诊断的某些疾病。糖尿病是这种情况,可以根据口服葡萄糖耐受性测试(OGTT)的数据进行分析。及时诊断糖尿病对于疾病管理至关重要。糖尿病不会突然出现。取而代之的是,患者表现出葡萄糖耐受性受损的症状,也可以通过葡萄糖耐受性测试来诊断。这项工作使用基于时间序列数据的深神经网络提出了疾病,特定糖尿病和葡萄糖耐受性差的分类和诊断方案。此外,通过Dalla Man和UVA/Padova模型获得了虚拟患者的数据;对实际患者的数据进行了验证。结果表明,深神经网络的精度为96%。这表明DNNS是一个有用的工具,可以在早期检测中改善疾病的诊断和分类。
数百项研究已经描述了梭状回面部区域 (FFA) 的反应特性,但我们尚未揭示其表征背后的计算机制。一个方法论上的挑战是,不同的计算模型对随机抽样的面部做出的预测可能难以区分。这项 fMRI 研究采用了合成的争议性面部刺激,旨在引出六个候选神经网络模型对 FFA 中面部表征的不同预测。我们展示了对一位参与者进行四次扫描的初步数据。争议性面孔揭示了各模型在预测 FFA 表征相异矩阵 (RDM) 的能力方面存在许多显著差异,而随机抽样的面部无法实现模型之间的可靠裁决。经过逆向渲染(将面部图像映射到 3D 面部模型的潜在空间)训练的神经网络优于具有相同架构但经过识别、分类或自动编码训练的替代模型。我们的研究结果支持了这样的观点:面部识别涉及反映面部物理结构的表现形式,并证明了需要通过神经成像实验来优化有争议的刺激来裁决脑计算模型。
梭状芽胞杆菌艰难梭菌通过两种有效的外毒素的作用损害了结肠粘膜。塑造艰难梭菌发病机理的因素未完全理解,但可能是由于胃肠道生态系统,粘膜免疫反应和环境因素的生态因素所致。对艰难梭菌感染(CDI)中药物的作用知之甚少,但最近的研究表明,非甾体类抗炎药(NSAIDS)恶化了CDI。这种现象的基础机制尚不清楚。在这里,我们表明,NSAID通过破坏结肠上皮细胞(CEC)并使细胞对艰难梭菌毒素的敏感性加剧CDI - 介导的损伤与抑制环氧酶(COX)酶的规范作用无关。值得注意的是,我们发现NSAID和艰难梭菌毒素靶向CEC的线粒体并增强艰难梭菌毒素 - 介导的损伤。我们的结果表明,NSAID通过与艰难梭菌毒素协同损害宿主细胞线粒体来加剧CDI。一起,这项工作突出了NSAID在结肠中加剧微生物感染中的作用。
乙细菌可以通过将CO 2转换为工业相关的化学物质和燃料的能力来在净零中发挥重要作用。对该潜力的全面开发将依靠有效的代谢工程工具,例如基于链球菌的链球菌CRISPR/CAS9系统的工具。然而,试图将含Cas9的载体引入木质杆菌的尝试不成功,这很可能是由于Cas9核酸酶毒性的毒性,并且存在内源性a。Woodii限制的识别位点 - cas9 Gene中的Modiiii限制(R -M)系统。作为替代方案,本研究旨在促进将CRISPR/CAS内源系统作为基因组工程工具的开发。因此,开发了一个Python脚本,以自动化杂质的邻近基序(PAM)序列的预测,并用于识别A. woodii I型I型I-B CRISPR/CAS系统的PAM候选。分别通过干扰测定和RT-QPCR在体内表征识别的PAM和本地领导者序列。由本机领导者序列,直接重复和足够的间隔者组成的合成CRISPR阵列的表达,以及用于同源重组的编辑模板,成功地导致了300 bp和354 bp的生成Pyre和Pye和PheA的架子内缺失。为了进一步验证该方法,还产生了3.2 kb的HSDR1缺失,以及在PHEA基因座的荧光激活和吸收转换TAG(快速)报告基因的敲入。同源臂长度,细胞密度和用于转化的DNA量显着影响编辑的效率。随后将设计的工作流应用于梭状芽胞杆菌的I型I-B CRISPR/CAS系统,从而使Pyre的561 bp框架内缺失具有100%的编辑效率。这是使用其内源性CRISPR/CAS系统的A. woodii和C.自身乙烷的基因组工程的第一个报告。
梭状芽胞杆菌差的差异(以前是梭状芽胞杆菌[1])是发达国家与医院相关腹泻的主要原因。近年来,其流行率归因于高呼吸菌株的出现,尤其是属于BI/NAP1/PCR Ribotype 027(RT 027)的菌株的出现,这些菌株会详细征集毒素A/B的高滴度,从而产生二元毒素,并产生二元毒素并表现出增加孢子的倾向[2]。将其基因组测序的第一个RT 027菌株是R20291菌株[3],负责2006年在英国Stoke Mandeville医院发生重大爆发。,R20291已成为研究最多的实验室菌株之一。对梭形基因组序列数据的全面开发依赖于正向和反向遗传学工具的应用[4],最著名的是基于内含子重新定位的封闭技术[5]。初始
灌注梭菌肠毒素(CPE)可用于消除过表达其细胞表面CPE受体的癌细胞 - Claudins的子集(例如CLDN3和CLDN4)。但是,CPE不能靶向仅表达CPE不敏感的Claudins(例如CLDN1和CLDN5)的肿瘤。为了克服这一限制,结构引导的修改被用来结合CPE变体,这些变体可以与CLDN1,CLDN2和/或CLDN5强烈结合,同时保持结合CLDN3和CLDN4的能力。启用(a)靶向最常见的内分泌恶性肿瘤,即CLDN1-Over-over表达甲状腺癌,以及(b)改善针对全球最常见的癌症类型,非小细胞肺癌(NSCLC)最常见的癌症类型,这是由多种Claudins(包括Claudins)高表达Clddn1和Clddn1和Claudins的高度表达。 在甲状腺癌(K1细胞)和NSCLC(PC-9细胞)模型上应用了不同的CPE变体,包括新型突变体CPE-MUT3(S231R/ S313H)。 在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。 对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。 在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。 因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。启用(a)靶向最常见的内分泌恶性肿瘤,即CLDN1-Over-over表达甲状腺癌,以及(b)改善针对全球最常见的癌症类型,非小细胞肺癌(NSCLC)最常见的癌症类型,这是由多种Claudins(包括Claudins)高表达Clddn1和Clddn1和Claudins的高度表达。在甲状腺癌(K1细胞)和NSCLC(PC-9细胞)模型上应用了不同的CPE变体,包括新型突变体CPE-MUT3(S231R/ S313H)。在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。 对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。 在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。 因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。在体外,CPE-MUT3而不是CPEWT显示出对K1细胞的CLDN1依赖性结合和细胞毒性。对于PC-9细胞,与CPEWT相比,CPE-MUT3改善了Claudin依赖性细胞毒性靶向。在体内,具有K1或PC-9肿瘤的异种移植模型中肿瘤内注射CPE-MUT3可诱导坏死,并降低了两种肿瘤类型的生长。因此,CPE的定向修改可以消除CPEWT无法靶向的肿瘤实体,例如,使用新颖的CPE-MUT3,CLDN1-过表达甲状腺癌。
