在神经形态计算中,人工突触提供多权重电导状态,该状态基于来自神经元的输入而设置,类似于大脑。除了多个权重之外,突触还可能需要其他属性,并且可能取决于应用,这需要从相同的材料中生成不同的突触行为。在这里,我们测量基于磁性材料的人工突触,这些磁性材料使用磁隧道结和磁畴壁。通过在单个磁隧道结下方的畴壁轨道中制造光刻凹口,我们实现了 4-5 个稳定的电阻状态,这些状态可以使用自旋轨道扭矩进行重复电控制。我们分析了几何形状对突触行为的影响,结果表明梯形设备具有非对称权重更新和高可控性,而直线设备具有更高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中,以显示特定于应用的突触功能的实用性。通过实施应用于流式 Fashion-MNIST 数据的人工神经网络,我们表明梯形磁突触可用作高效在线学习的元生函数。通过实施用于 CIFAR-100 图像识别的卷积神经网络,我们表明直磁突触由于其阻力水平的稳定性而实现了近乎理想的推理精度。这项工作表明多权重磁突触是一种可行的神经形态计算技术,并为新兴的人工突触技术提供了设计指南。
用数值方法求解方程。• CO5:应用插值概念求解数值微分和积分问题。教学大纲:矩阵代数:基本列变换和行变换、通过基本行运算求逆矩阵、矩阵的梯形和秩、线性方程组:一致性、高斯消元法、高斯-乔丹法、雅可比法和高斯-赛德尔法求解、特征值和特征向量:基本性质、谱矩阵分解、对角化、矩阵的幂。向量空间:向量概念向高维的推广、广义向量运算、向量空间和子空间、线性独立性和跨度、基。内积空间和 Gram-Schmidt 正交化过程。线性变换。微分方程及应用:一阶和高阶线性微分方程。用逆微分算子、参数变分法和待定系数法求解齐次和非齐次线性方程。代数和超越方程的解:参数曲线的追踪:摆线和相关曲线。二分法、试位法、牛顿-拉夫森法。用牛顿-拉夫森法求解非线性方程组。插值:有限差分和除差分。牛顿-格雷戈里和拉格朗日插值公式。牛顿除差插值公式。离散数值微分、数值积分:梯形法则、辛普森 1/3 法则和辛普森 3/8 法则。常微分方程的数值解:泰勒级数法、修正欧拉法、龙格-库塔法。参考书:
现场总线模块包括模拟和数字类型。模拟模块每个模块有 8 个点,数字模块有 16 个点。数字现场总线模块可以执行各种功能,例如事件序列监控、梯形逻辑控制和脉冲计数。模拟输入具有可配置的分辨率。所有输出都支持在控制处理器、通信或现场总线模块发生故障时可选择的状态。所有现场信号都与控制电子设备隔离,在大多数情况下,每个点都与所有其他点隔离。其他现场总线模块与 I/A 系列智能变送器通信。
所有物品均为军用物品 A. 身份证 B. 带有长链和短链的身份标签 C. 跑鞋(IAW AR 670-1)D. ACH:1. 无头盔罩/NVG 支架/灯 2. 无需为零日贴胶带/做标记 3. 必须拥有所有发放的护垫(椭圆形护垫 x4、冠形护垫 x1、梯形护垫 x2)4. 带有所有硬件的可维修下巴带 E. OCP/IHWCU 上衣(所有补丁、胶带和等级)
现场总线模块包括模拟和数字类型。模拟模块每个模块有 8 个点,数字模块有 16 个点。数字现场总线模块可以执行各种功能,例如事件序列监控、梯形逻辑控制和脉冲计数。模拟输入具有可配置的分辨率。所有输出都支持在控制处理器、通信或现场总线模块发生故障时可选择的状态。所有现场信号都与控制电子设备隔离,在大多数情况下,每个点都与所有其他点隔离。其他现场总线模块与 I/A 系列智能变送器通信。
摘要 本文旨在确定使用可编程逻辑控制器的工业生产线的可靠性。制造业的生产线使用可编程逻辑控制器模块实现自动化,该模块使用编程软件进行编程。使用的编程软件是西门子 S7-200,而编程语言是梯形编程语言。当今尼日利亚的大多数制造业仍使用继电器进行控制。控制面板上的接线非常多,以至于使用传统的电磁继电器通常需要数小时才能追踪和更换机器的任何故障。替代和更好的控制方法是使用可编程逻辑控制器。关于食品生产线中 PLC 可靠性的研究文章很少。本文旨在解决这一空白。本研究采用统计分析方法,该方法对不确定性具有较高的容忍度,因此结果更准确、实用。本研究确定了故障率、平均故障间隔时间 (MTBF)、平均故障时间 (MTTF) 和可用性,以此作为确定网络可靠性的手段。因此,研究表明,连续三年使用 PLC 的生产线的平均可用性为 84%,可靠性为 86%。因此,应鼓励在工业自动化中使用 PLC,因为与在控制电路中使用电磁继电器相比,PLC 可以轻松检测到故障,从而减少停机时间。关键词:可编程逻辑控制器、可用性、可靠性、梯形编程语言、继电器逻辑。1.简介 控制工程随着时间的推移经历了几次变化。几个世纪以来,人类是控制事物的唯一手段 [1]。可编程逻辑控制器 (PLC) 是一种实现工业过程自动化的现代方法。PLC 比普通计算机更具优势,因为它们是为恶劣的工业环境而构建的。PLC 由输入模块或点、中央处理单元 (CPU) 和输出模块或点组成。输入接受来自各种
摘要 — 本文研究了人工神经网络 (ANN) 作为基于机器学习算法的替代建模方法在模拟高 Q 压电谐振器和滤波器的电声波行为方面的有效性。本文还讨论了结合 ANN 模型的域分解方法,用于同时分析多域射频 (RF) 模块。本文开发了不同的多层感知器 (MLP) ANN 模型,并根据其模型精度和模型效率进行了基准测试。然后利用开发的模型构建梯形 Band 7 和 Band 41 带通发射滤波器作为示例,以突出建模方法的质量。本文简要讨论了与机器学习算法能力相关的其他可能应用。
在海马中,由于ICV-STZ引起的游离梯形损伤是用TBARS水平表示的脂质过氧化指数。MDA级别。将含有0.5 mL Tris-HCl和0.5 mL上清液的反应混合鸡尾酒在37°C下孵育2小时。之后,加入1 ml三氯乙酸(TCA,10%),并以1000×g离心10分钟。将获得的上清液与1 mL硫代硫酸硫酸(TBA 0.67%)混合。然后将混合管放入沸水中10分钟。冷却后,将蒸馏水(1ml)添加到其中。吸光度记录为532 nm。TBARS水平均表示为NMOL MDA/MG蛋白(Sachdeva和Chopra,2015年,Wills,1966年)。
图 2. (a) 在未改性(深灰色图)和改性(浅灰色图)玻璃基板上通过 TPP-DLW 制造的聚合物立方体的剪切力测量。在这两种情况下,测试的立方体的边长均为 10 µm。水平虚线表示将微结构从基板上移开所需的最大力。插图显示了在边长为 30 µm 的立方体上进行的力-位移实验的光学显微镜图像。力传感器是图像右侧的明亮梯形结构。在未改性(b)和改性(c)基板上制造的 TPP 微结构的事后 SEM 图像。只有在改性基板上制造的微结构上才能清楚地看到由于与力传感器接触而产生的塑性变形迹象。(b)和(c)中的比例尺为 5 µm。