简单来说,PLC 是一种固态工业控制设备,它接收来自用户提供的受控设备(如传感器和开关)的信号,按照存储在用户内存中的梯形图应用程序进度确定的精确模式执行这些信号,并提供输出以控制流程或用户提供的设备(如继电器或电机起动器)。
hedin的方程式提供了一条优雅的途径,可以通过一组非线性方程的自洽迭代来计算确切的一体绿色功能(或传播器)。其一阶近似(称为GW)对应于环图的重新介绍,并且在物理和化学方面已显示出非常成功的。通过引入顶点校正,尽管具有挑战性,可以进行系统的改进。 考虑到异常的传播器和外部配对电位,我们得出了一组与著名的Hedin方程相等的封闭方程组,但作为第一阶近似值,粒子粒子(PP)t -matrix近似值,在此执行梯形图的分解。 通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。可以进行系统的改进。考虑到异常的传播器和外部配对电位,我们得出了一组与著名的Hedin方程相等的封闭方程组,但作为第一阶近似值,粒子粒子(PP)t -matrix近似值,在此执行梯形图的分解。通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。
在计算机科学和人工智能不断发展的景观中,模糊图理论和拓扑指数的整合为决策过程提供了强大的框架。模糊图,其特征是它们处理不确定性和不精确的能力,扩展了传统的图形概念,从而使复杂网络的更细微的表示。本研究探讨了模糊拓扑指数在梯子和网格图中的应用,这些阶梯和网格图是网络理论中的基础结构。梯子图,类似于梯子的梯级,以及代表网状结构的网格图,通过模糊图理论的镜头进行分析,以提取有意义的见解,有助于决策。模糊拓扑指数与这些图形结构的融合为评估网络鲁棒性,优化路线和增强整体系统可靠性提供了强大的工具。本文深入研究了传统拓扑指数的探索,例如randić索引以及模糊的拓扑指数和模糊的Zagreb索引,专门用于梯子和网格图。我们通过机器学习技术分析上述图表,并提供全面的统计分析。我们发现梯子和模糊阶梯图之间以及网格和模糊的网格图之间存在很强的相关性。我们的发现表明,如果已知梯形图和网格图中的拓扑索引的值,那么我们可以准确地预测梯形图和网格图的模糊拓扑索引的值。使用机器学习技术对清晰和模糊图中的拓扑指数进行分析是一种创新的方法,不仅可以节省时间,而且还提供了更全面,更精确的评估。
PLC:编程逻辑控制器ST:结构文本FBD:功能框图IL:指令列表语言LD:梯形图语言语言语言VFD:频率可变驱动程序SFC:顺序函数sfc:顺序函数表图DC:直接电流AC:替代电流AC:替代电流SRC:Silicon-Controll-controll-Controll-Controlled Rected Rected Rectifier PMERSTORTINT/INTERS Strocition Stroptast/Intement Scart intermotion SCAD SCAD/INTELLITY PMERTISTION TIA/IPPORTIANS IPSOUTERITY TOC ip:ip ip ip ip:和数据采集HMI:人机接口IGBT:绝缘栅极双极晶体管
将网络安全考虑因素融入 OT 系统的构思、设计、开发和运行中。有关更多信息,请参阅美国能源部网络安全、能源安全和应急响应办公室 (CESER) 的《网络信息工程》出版物。 练习并保持手动操作系统的能力 [CPG 5.A]。 创建 HMI 的工程逻辑、配置和固件的备份,以实现快速恢复。让您的组织熟悉出厂重置和备份部署 [CPG 2.R]。 检查 PLC 梯形图逻辑或其他 PLC 编程语言和图表的完整性,并检查是否存在任何未经授权的修改,以确保正确操作。对手可能会尝试通过更改配置和梯形图逻辑来保持持久性或以不安全的方式秘密操作设备。 更新和保护网络图,以反映 IT 和 OT 网络 [CPG 2.P]。运营商应应用最小特权原则,并需要了解个人对网络图的访问。保持对内部和外部招揽工作(恶意和良性)的认识,以获取网络架构并将映射限制为受信任的人员。考虑使用加密、身份验证和授权技术来保护网络图文件,并实施访问控制和审计日志以监视和限制谁可以查看或修改您的网络图。 注意网络/物理威胁。对手可能会尝试通过各种物理手段获取网络凭据,包括正式访问、贸易展和会议对话以及通过社交媒体平台。 盘点并确定所有 HMI 的报废状态 [CPG 1.A]。尽快更换报废的 HMI。 对物理过程的操纵实施软件和硬件限制,限制成功入侵的影响。这可以通过使用操作联锁、网络物理安全系统和网络信息工程来实现。
Course Contents: Unit 1 : PLC and I/O processing: 7L Programmable Logic Controller basics, overview of PLC systems – Architecture of PLC, Principle of Operation, input/output Units – power supplies and isolators, current sinking and current sourcing, types of PLC memory, fundamental PLC wiring diagram, relays, switches, transducers, sensors –seal-in circuits.输入/输出单位信号调理。远程连接网络处理输入I/O地址单元2:PLC编程:7L逻辑基础,PLC编程语言。梯形图,梯形图指令,逻辑功能,闩锁,多个输出。计时器和反类型以及定时图,换档寄存器,序列函数,闩锁指令;算术和逻辑指令,包括各种示例。打开/关闭开关设备,I/O模拟设备,模拟PLC操作,对连续过程的PID控制,简单的闭环系统,使用比例,积分和衍生工具(PID)单元3:PLC接口到各种电路的闭合环系统:7L编码器,传输器和先进的传感器。测量温度,流动,压力,力,位移,速度,水平的测量。开发梯子逻辑,用于测序电动机,储罐水平控制,开关温度控制,电梯,瓶装厂,停车场等。电动机控件:交流电动机启动器,交流电机超载保护,直流电机控制器,可变速度(可变频率)交流电动机驱动器。单元4:SCADA系统:7L简介,通信要求,SCADA系统的理想属性,功能,优势,缺点和SCADA的应用程序。2。SCADA体系结构(第一代 - 单片,第二代 - 分布式,第三代 - 网络体系结构),正在运行和控制互连电源系统的SCADA系统,电源系统自动化(自动变电站控制和电源分配)。单元5:HMI(人机接口):7L从HMI开始,创建应用程序,创建标签,下载 /上传程序,与PLC Open Systems InterConnection(OSI)模型,Process Field Bus(PROFIBUS)进行通信。SCADA与PLC,PLC接口和工业过程的接口示例参考书:1。Stuart A. Boyer:“ Scada-监督控制和数据获取”,美国仪器协会出版物,仪器系统和自动化协会,第4版,2010年。Gordon Clarke,Deon Reynders“实用的现代SCADA协议:DNP3,60870.5及相关系统”,Newnes,Elsevier Publications的烙印,第一版,2004年3。Batten G. L.,“可编程控制器”,McGraw Hill Inc.,第二版4。Gordan Clark,Deem Reynders,“实用的现代SCADA协议”,Elsevier 5。P. K. Srivstava,“具有应用程序的可编程逻辑控制器”,BPB出版物
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。