摘要:本文旨在从本质上调节电力系统扰动条件下直流微电网的直流母线电压。因此,提出了一种新型最优模型预测超扭转分数阶滑模控制 (OMP-STFOSMC),用于三相交流-直流转换器,可有效提高微电网的稳定性和动态性能。传统的模型预测控制器严重影响动态稳定性,导致过冲、下冲和稳定时间过长。可以用滑模控制器代替这些传统控制器,以适当解决此问题。传统滑模控制器的主要缺点是控制信号中的高频抖动,这会影响系统,并且使其在实际应用中不令人满意且不可行。所提出的 OMP-STFOSMC 可以有效提高控制跟踪性能并减少高频抖动问题。随机分形搜索 (SFS) 算法因其高探索性和良好的局部最优规避能力而被用于最佳地调整控制器参数。考虑不同的运行条件来评估所提出的控制器的动态和无抖动性能。通过比较分析的仿真结果,可以观察到所提出的OMP-STFOSMC具有更好的动态稳定性特性。关键词:直流微电网,跟踪性能,抖动问题,OMP-STFOSMC,SFS算法
在过去的 20 年里,神经技术取得了长足的进步。然而,我们距离实现这些技术的商业化还有很长的路要走,因为我们缺乏一个统一的框架来研究将硬件、软件和神经系统结合在一起的网络神经系统 (CNS)。动态系统在开发这些技术方面发挥着关键作用,因为它们可以捕捉大脑的不同方面并深入了解它们的功能。越来越多的证据表明,分数阶动态系统在神经系统建模方面具有优势,因为它们具有紧凑的表示形式和捕捉神经行为中表现出的长程记忆的准确性。在这篇简短的综述中,我们概述了分数阶 CNS,其中包括 CNS 背景下的分数阶系统。特别是,我们介绍了分析和综合分数阶 CNS 所需的基本定义,包括系统识别、状态估计和闭环控制。此外,我们还提供了一些 CNS 背景下的应用的说明,并提出了一些未来可能的研究方向。这三个领域的进步对于开发下一代 CNS 至关重要,最终将改善人们的生活质量。
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
3 此关系可从单方程能量平衡模型中推导出来。在离散时间中,能量平衡模型为 Δ T t = - λT t -1 + bRF t ,其中 T t 为温度,RF t 为辐射强迫,t 以年为单位,b 为单位调整。这可解得 T t = b (1 – (1- λ )L) -1 RF t = ( b /λ) F t + c *(L)Δ RF t ,其中 c *(L) 是 Beveridge-Nelson 分解的可求和残差滞后多项式。如果 RF t 可以很好地近似为 1 阶积分,则此质量平衡方程意味着 T t 和 RF t 是 (1,1) 阶协整的,协整系数为 b / λ 。如果 RF t 是持续性的但不一定是 1 阶协整的,那么 T t 将继承 RF t 的持续性,并与 RF t 共享共同的长期趋势。在这里,我们遵循 Kaufmann、Kauppi 和 Stock (2006) 的观点,采用 1 阶协整模型。有关此处概述的能量平衡模型推导的更多信息,请参阅 Kaufmann 等人 (2013) 和 Pretis (2019)。
所有 NX 无线传感器均配备我们专有的 IntelliSCOPE™ 功能,只需单击按钮即可实现真正的无梯编程和安装。IntelliSCOPE™ 提供实时占用数据,帮助优化任何应用中的传感器检测,从而节省时间和金钱。带有站点管理器的 NX 区域控制器为建筑业主和设施经理提供多建筑照明控制、照明系统洞察以及与建筑管理系统 (BMS) 控制操作顺序的集成。
先决条件:掌握基本的坐标几何、统计学和微积分知识 总接触时长:60 小时 目的:数学是工程专业学生的支柱。数学课程根据工程部门的需求不断变化。教学大纲的设计考虑到了各类学生的新兴需求。课程非常重视各种内容的应用。本课程将培养学生进行精确计算的分析能力,并为学生提供继续教育的基础。 课程目标:完成本课程后,学生将能够 i) 应用克莱姆法则和矩阵求逆的知识来寻找线性联立方程的解。ii) 应用直线、圆、圆锥曲线方程解决实际问题。iii) 应用各种积分评估技术和各种寻找一阶和二阶常微分方程的完全原函数的方法来解决工程问题。iv) 使用偏微分的概念来解决物理问题。 v) 分析实际情况下的统计数据和概率。 单元 1 行列式和矩阵 10 小时 1.1 行列式:4 1.1.1 2 阶和 3 阶行列式的定义和展开。子式和余因式 1.1.2 行列式的基本性质(仅限陈述)和简单问题 1.1.3 4 阶行列式的 Chios 方法 1.1.4 用 Cramer 规则解线性联立方程(最多 3 个未知数)。 1.2 矩阵: 1.2.1 矩阵的定义及其阶。 6 1.2.2 不同类型的矩阵。(矩形、方阵、行矩阵、列矩阵、上三角矩阵、下三角矩阵、对角矩阵、标量矩阵、单位矩阵、零矩阵) 1.2.3 两个矩阵相等 1.2.4 矩阵与标量的加法、减法、乘法以及两个矩阵的乘法 1.2.5 矩阵的转置、对称矩阵和斜对称矩阵、简单问题 1.2.6 奇异矩阵和非奇异矩阵、3 阶矩阵的伴随矩阵和逆矩阵
高维分数阶反应扩散方程在生物学、化学和物理学领域有着广泛的应用,并表现出一系列丰富的现象。虽然经典算法在空间维度上具有指数复杂度,但量子计算机可以产生仅具有多项式复杂度的量子态来编码解决方案,前提是存在合适的输入访问。在这项工作中,我们研究了具有周期性边界条件的线性和非线性分数阶反应扩散方程的高效量子算法。对于线性方程,我们分析和比较了各种方法的复杂性,包括二阶 Trotter 公式、时间推进法和截断 Dyson 级数法。我们还提出了一种新算法,该算法将汉密尔顿模拟技术与交互图像形式相结合,从而在空间维度上实现最佳缩放。对于非线性方程,我们采用 Carleman 线性化方法,并提出了一种适用于分数阶反应扩散方程空间离散化产生的密集矩阵的块编码版本。