为了控制两级量子系统的状态(例如离子量子轴的自旋状态),光学频率梳子通过从一个梳子牙齿中刺激的吸收并刺激到另一个梳子牙齿中的刺激吸收了两光子的拉曼过程。如果两级能量差距是激光重复速率的整数倍数,则谐振拉比振荡会激发。当后者的频率接近量子线的过渡速度时,Bloch球体上可能存在强烈的静脉锁定循环,该循环可能会产生一个非常狭窄的,相同间隔的光谱线的亚谐波系列。如果将光频梳的重复速率适当地调整为后者(最多达到平均载体包络频率),则应到达两级系统的高度谐振动力学状态,在任何一对相邻的梳子齿中,都会发生拉曼刺激的吸收和发射过程的情况。
和处理7,范围8,微波光子学9,双弯曲光谱学10和天文学光谱仪校准11。这些孤子作为Lugiato – Lefever方程的局部溶液12,13(LLE)出现,可以在具有高质量因素的谐振器中观察到。CSS的出现依赖于一侧异常的群体色散(GVD)和Kerr非线性之间的双重平衡,以及在另一侧的损耗和能量注入(通常是通过连续波(CW)激光泵)之间的双重平衡。由于它们的高质量因子和紧凑的设计(数百微米的空腔长度),微孔子在过去十年中引起了显着的注意力。De- spite these impressive performances, launching and collect- ing light in these resonators can be challenging, requiring ad- vanced fiber coupling devices such as a prism fiber taper 15 or advanced coupling methods for chip microresonators 16 , and while progresses on packaging are on going, it is still an ob- stacle for fiber applications.在谐振器中产生OFC的另一种方法是,在长度为117米的全纤维环腔中,其有效质量因子可以通过在腔体18中包括一个放大器来达到数百万。使用这些谐振器架构获得的光谱延伸到几个THZ上,几乎就像微孔子一样,但它们具有两个主要缺点。首先,线间距在MHz范围内,该范围限制了应用程序范围(主要在GHz范围14中),其次,它们不是Com-
在光子学中,谐振器是一种用途元素,其目的是引导光。它们包括各种大小的数量级和激光源的力量。可以认为,某些效应可以被认为是否定的,导致简化的数学模型。我们将重点关注两个这样的模型:一种与耳语画廊模式谐振器有关,另一个与响声/Fabry-Perot共振器有关。在第一种情况下,保留的模型会导致整个空间中的二维线性Helmholtz方程,其物质定律沿有界的界面跳跃。对靠近真实轴的复合共振集进行了分析,对应于靠近界面的模式。在第二种情况下,考虑了基于Lugiato-LeFever方程的一维模型。从溶液中发出的施加解决方案的分支被突出显示,提供了频率梳子解决方案。
来自连续波驱动的Kerr-Nonlinear微音主管的频率梳已演变为一项关键的光子技术,并从光学通信到精度光谱法进行了应用。对于许多这些应用来说,是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。 一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。 在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。 作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。 提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。 ©2023作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1063/5.0170224是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。©2023作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0170224https://doi.org/10.1063/5.0170224
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
摘要 - 我们报告了含镁镁(MGF 2)的微型谐振器中的Kerr频率梳子的产生。两个MGF 2微毫无疑问,其Q因子为10 8 andradiiof 180 µMAND 85 µMWEREFAREFRICATICAND和CHACHACTHACTARIDED。尽管处于1550 nm的波长处处于正常的色散状态,但微腔表现出了Kerr Freemencycombs的产生。可见,单一肺炎腔,当带有1550 nm激光器时,产生了一个梳子,具有光谱范围超过250 nm。这种出乎意料的现象强调了MGF 2微孔子的独特非线性特性,并基于超高Q晶体窃窃私语模式的谐振器,为紧凑型Kerr梳子发电机打开了新的视角。在方面上,紫外线(UV)波长范围内MGF 2的透明度表明,将KERR频率梳延伸到UV光谱中的潜力,进一步增强了非线性光子应用中MGF 2微腔的多功能性。
b'let g =(v,e)是一个简单,无方向性和连接的图。A con- nected dominating set S \xe2\x8a\x86 V is a secure connected dominating set of G , if for each u \xe2\x88\x88 V \\ S , there exists v \xe2\x88\x88 S such that ( u, v ) \xe2\x88\x88 E and the set ( S \\ { v })\ xe2 \ x88 \ xaa {u}是G的主导集。由\ xce \ xb3 sc(g)表示的安全连接的g的最小尺寸称为g的安全连接支配数。给出了图G和一个正整数K,安全连接的支配(SCDM)问题是检查G是否具有最多k的安全连接的统治组。在本文中,我们证明SCDM问题是双弦图(弦弦图的子类)的NP完整图。我们研究了该问题的复杂性,即两分图的某些亚类,即恒星凸两分部分,梳子凸两分部分,弦弦两分和链图。最小安全连接的主导集(MSCD)问题是\ xef \ xac \ x81nd在输入图中的最小尺寸的安全连接的主导集。我们提出a(\ xe2 \ x88 \ x86(g)+1) - MSCD的近似算法,其中\ xe2 \ x88 \ x86(g)是输入图G的最大程度)对于任何\ xc7 \ xab> 0,除非np \ xe2 \ x8a \ x86 dtime | V | o(log log | v |)即使对于两分图。最后,我们证明了MSCDS对于\ Xe2 \ x88 \ x86(g)= 4的图形是APX-Complete。关键字:安全的统治,复杂性类,树宽,和弦图。2010数学主题classi \ xef \ xac \ x81cation:05c69,68q25。
将非线性纳米光量设备引入光学频率梳量计量学领域为低功率和芯片集成时钟,高精度频率合成和广泛带宽光谱的新机会。但是,这些进步中的大多数仍被限制在光谱的近红外区域,该区域限制了在紫外线和可见范围内与大量量子和原子系统的频率梳集成。在这里,我们通过引入多段纳米型薄膜硅锂波导来克服这一缺点,这些尼贝特波导将工程性分散和鼠标匹配匹配的匹配结合在一起,从而通过χ(2)和χ(3)非线性的组合进行了有效的超核电生成。只有1,550 nm处的脉冲能量仅90 pj,我们实现了跨越330–2,400 nm的无间隙频率梳覆盖率。从近红外泵到350–550 nm的紫外线 - 可见区域的转化效率为17%,我们对优化的极点结构的建模预测效率更高。通过χ(2)在同一波导中通过χ(2)非线性的谐波生成直接产生载体 - 内玻璃偏移频率,以及在短达350 nm的波长下验证梳子连贯性的手段。我们的结果提供了一种集成的光子学方法,可以创建可见和紫外线频率梳子,以影响精度光谱,量子信息处理和在此重要光谱窗口中的光学时钟应用。
频率梳子具有10-20 GHz的模式间距对于越来越重要的应用至关重要,例如天文光谱仪校准,高速双重击向光谱和低噪声微波生成。虽然电磁调节器和微孔子可以以这种重复速率提供窄带梳子来源,但剩余的挑战是产生具有足够峰值功率的脉冲来启动非线性超脑抗脑电图的一种手段,该脉冲跨越了数百个Terahertz(THZ)(THZ)。在这里,我们使用现成的偏振化放大和非线性纤维组件为此问题提供了简单,坚固且通用的解决方案。使用1550 nm的谐振电频率梳子证明了这种非线性时间压缩和超脑部生成的光纤方法。我们以20 GHz的重复速率显示了如何轻易实现短于60 fs的脉冲。可以将相同的技术应用于10 GHz的皮秒脉冲,以表现出9倍的时间压缩,并实现50 fs脉冲,峰值功率为5.5 kW。这些压缩的脉冲通过多段分散量的异常 - 非线性纤维或tantala波导,可以在传播后跨越超过600 nm的平坦超脑生成。相同的10 GHz源可以很容易地获得八度跨度的光谱,以在分散工程二氮化硅波导中自我引用。这种简单的全纤维方法用于非线性光谱扩展填补了将任何窄带10–20 GHz频率梳子转换为宽带光谱的关键空白,用于从高脉冲率中受益并需要访问单个梳子模式的广泛应用。