显着对象检测(SOD)旨在识别引起人类注意力的图像中最重要的区域。这些地区通常包括汽车,狗和人等物体。在图1中,在视觉上表示显着的对象检测后的输入和输出图像。它旨在模仿人类的关注,以关注现场的引人注目。识别图像中的显着区域可以促进后续的高级视觉任务,提高效率和资源管理并提高绩效(Gupta等,2020)。因此,SOD可以帮助过滤不相关的背景,并且草皮在计算机视觉应用中起着重要的预处理作用,为这些应用提供了重要的基本处理,例如细分(Donoser等,2009; Qin等,2014; noh et al。 Borji和Itti,2019年; Akila等人,2021年,2021年;现有的SOD方法可以大致分为两个类:1)常规方法; 2)基于深度学习的方法,如图2所示。传统方法利用低级特征和一些启发式方法来检测包含基于局部对比的基于扩散的贝叶斯方法,先验和经典监督的显着对象。此外,基于深度学习的方法可以帮助提取全面的深层语义特征以提高性能。可以进一步分类为完全监督的学习(Wang等,2015a; Lee等,2016a; Kim and Pavlovic,2016; He et al。,2017a; Hou等,2017; Shelhamer等,2017; Shelhamer et al。,2017; Su等,2019; Su等人,2019年)和弱监督的学习(Zhao Al Al Al Al Al。 Al。,2018年,2018年; Zhang等人,2020a;本文将根据两个
化石燃料使用带来的成本、传输损耗和环境影响不断上升,促使人们在发电方面转向可再生能源 (RES)。智能电网 (SG) 技术本质上依赖于 RES 专属电力框架,它促进了高效的能源消耗和分散能源资源的分配。这项调查强调了 RES 在 SG 基础设施中的整合,以及约旦向 SG 未来转型的潜力。马安市位于一个以太阳辐射充足和风速显著为特征的地区,是部署 RES 的最佳案例研究。一个融合的 RES 系统,包括风能和光伏 (PV) 模块,总容量为 180 兆瓦,经过精心设计,以满足马安的电力需求。马安的负荷要求是通过分析该市的年平均能源消耗并根据人口增长预测进行调整来确定的。为了提高系统的可靠性并满足紧急负载需求,集成了存储解决方案。利用 MATLAB Simulink 平台,通过数学建模和仿真分析证实并评估了所提设计的性能。模拟考虑了影响每个系统生产能力的因素,包括输电线路损耗。此外,还结合了比例-积分-微分 (PID) 控制器,并在模拟故障条件下进行了评估,确保在故障检测后五秒内断开系统。模拟结果与数学模型预测一致。从经济角度来看,安装所提出的系统是合理的,预计每年可节省约 8000 万约旦第纳尔 (JD),有利的回收期为 14 个月。平准化电力成本具有竞争力,为 14.41 JD/MWh。研究结果主张在约旦扩大可再生能源整合,表明在全国范围内实施基于可再生能源的 SG 是可行的。
摘要目的“精密医学”一词描述了针对一个逆转或修饰疾病病理生理学的人量身定制的理性治疗策略。在癫痫,单病例和小队列报告中报告了特定遗传性癫痫中的新生精度医学策略。这项多中心观察性研究的目的是研究癫痫中精确医学的更深层次。方法对包括儿童和成人在内的六个三级癫痫中心进行了对分子遗传诊断患者进行癫痫患者的系统调查。一份标准化问卷用于数据收集,包括遗传发现以及对临床和治疗管理的影响。结果我们包括293例遗传性癫痫,137名儿童和156名成年人,162名女性和131名男性。由于94例患者的遗传发现(包括理性精度医学治疗和/或由遗传诊断引起的治疗变化)进行了治疗变化,但与已知的病理生理机制无关。对56例患者进行了合理的精确医学治疗,这是在33/56(59%)中尝试的,并且在10/33(30%)患者中成功(即降低了50%的癫痫发作)。在73/293(25%)患者中,遗传诊断引起的治疗变化,但与已知的病理生理机制无直接相关,这在24/73(33%)中成功了。重要的是,我们对专门癫痫中心的临床实践的调查显示,在鉴定出癫痫的遗传原因后,临床结果的差异很高。对于许多癫痫患者来说,基因检测后的治疗范式的有意义的变化是可能的。这项系统的调查概述了当前的精密医学在癫痫中的应用,并建议采用一种更加考虑的方法。
与化石燃料利用相关的不断升级的成本,传输损失和环境影响已经催化了发电中向可再生能源(RES)的范式转变。智能电网(SG)技术固有地依赖于重新分配的电力框架,促进了有效的能源消耗和分散能源的分配。这项调查强调了RES在SG基础架构中的整合以及约旦向支持SG的未来过渡的潜力。位于以丰富的太阳辐照度和明显的风速为特征的地方,Ma'an City提出了一个最佳的案例研究,以进行RES部署。一个合并的RES系统,包括180 MW的总容量,包括风能和光伏(PV)模块,已精心尺寸,设计用于满足Ma'an的电气需求。通过分析该市的平均年度能源消耗,并根据人口增长预测调整了该城市的平均年度能源消耗,确定了MA'AN的负载要求。为了增强系统的可靠性并满足紧急负载需求,已集成了存储解决方案。使用MATLAB Simulink平台,通过数学建模和仿真分析对所提出的设计的性能进行了证实和评估。进行了模拟,该模拟是针对影响每个系统生产能力的因素(包括传输线损失)。模拟结果与数学模型预测表现出一致。级别的电力成本的价格为14.41 JD/MWH。此外,在模拟断层条件下合并并评估了比例综合衍生(PID)控制器,以确保故障检测后的五秒钟窗口内的系统断开连接。从经济上讲,拟议系统的安装是合理的,预计每年将节省约8000万个约旦第纳尔(JD),收入良好的回报期为14个月。调查结果倡导在约旦扩大RES集成,这表明基于全国RES的SG实施的可行性。
新技术是为了使用轨道碎片通过电离层时产生的等离子体波来跟踪空间中的小物体[1,2,3]。已经对计算机模拟和实验室测量进行了研究。原位观察结果证实了这些等离子体波的存在是在空间传感器与已知空间对象的结合过程中进行的。小空间物体通过结构化环境时,也可以使用接地传感器和远程卫星仪器检测到。阿拉斯加的HAARP HF设施通过产生对齐的违规行为(FAI)提供了这种结构化环境。空间碎片和卫星通过这些不规则性会激发血浆排放,例如惠斯勒,压缩alfvén或较低的杂种波。当带电的空间对象遇到FAI时,轨道动能转换为电磁等离子体振荡而产生了惠斯勒波动扰动[3。4]。吹口哨者在距离源区域约9000 km/s的范围内繁殖,可以在几个地球 - 拉迪的范围内检测到。在加拿大Cassiope/Swarm-E航天器上的原位电场探头已检测到100 km的快速磁波。检测后,需要空间碎片地理位置才能更新轨道预测模型。从主机传感器的原位测量值可以从空间中电磁(EM)等离子体波的测量值提供范围和到达角度。从目标对象形成e x b poynting通量,从而产生其源方向。到达的角度需要EM场的矢量传感器,以从空间碎屑中给出入射信号的电(E)和磁性(H)矢量成分。这个方向的时间历史记录允许估计目标轨迹通过主机传感器平台通过。当带电的目标碎片越过田间对齐的不规则性时,它会发射一个分散波形,作为惠斯勒下调或磁通型上的速度。来自源点的传播在这些信号中引起时间分散,这些信号在时间和空间范围内都延伸。匹配的带有小波的信号的滤波器处理,等离子波形可以在特定的生成时间确定范围到源的范围。