摘要:水下图像遭受颜色失真和细节的损失,这严重影响了水下机器人的视觉感知能力。为了提高检测准确性,提出了一个多任务学习框架,以基于对比度学习的水下图像增强和对象检测提出了多任务学习框架,这不仅会产生视觉上友好的图像,还可以提高对象检测精度,从而实现对象检测任务的图像增强图像。为了解决不清楚目标纹理特征的问题,用于检测任务的区域生成模块用于构建用于对比性学习的正面和负面图像块,以确保目标区域更接近特征空间中的原始图像。此外,检测到的梯度信息用于指导图像增强方向,有益于目标检测。此外,提出了一种基于循环生成对抗网络的图像翻译方法来学习和保留图像增强的清晰图像特征,从而消除了对配对的水下图像的需求并减少了数据要求。最后,在EUVP,U45和UIEB数据集上对增强算法进行了验证,并且在RUOD,URPC2020和RUIE数据集上验证了检测算法。实验结果表明,所提出的算法可以在主观视觉中有效纠正颜色失真,同时保留原始图像和目标的结构纹理。就客观指标而言,峰值信噪比达到24.57 dB,结构相似性达到0.88。在更快的R-CNN(基于区域的卷积神经网络)和Yolov7(您只看一次,版本7)算法后,检测精度平均提高了2%。关键字:水下图像增强;对比学习;循环生成对抗网络;对象检测
微生物在牛奶中的失活效应是确保产品质量的重要因素。超高压力处理技术已被广泛使用,因为它可以更好地维护食物的原始颜色,香气,味道和营养成分。为了提高检测效率并有效地适应市场,将非破坏性测试技术引入超高压力灭菌非常重要。本文
(国家电网新区域电源公司,Xiongan新区域071600,中国)摘要:边缘设备和输电线路智能检查的组合可以满足重新的需求 -
恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。
15.补充说明 16.摘要 纤维增强聚合物 (FRP) 复合材料越来越多地用于修复强度不足或恶化的混凝土结构构件并延长桥梁结构的使用寿命。修复是通过使用湿铺工艺或预制条带的粘合剂粘合将 FRP 条带外部粘合到混凝土基材上进行的。虽然该方法已被证明非常有效,但仍需要开发与检查期间识别缺陷相关的专业知识。本报告涉及缺陷识别的四个具体方面:(1) 识别复合材料增强混凝土结构构件中的缺陷类型;(2) 确定所选缺陷对结构系统性能和完整性的潜在影响; (3) 确定可用于检测缺陷的最先进的质量保证和无损评估 (NDE) 技术;(4) 对最有可能成功用于质量保证目的的选定技术进行初步调查。确定潜在缺陷,按类型和可能发生的阶段进行分类,并列出其影响。使用基于实验断裂力学的方法评估选定缺陷类型的严重性。根据现场检查所需的相关特性评估确定的 NDE 技术范围,并根据适用性对这些技术进行分类。通过使用示例更深入地解释了两种技术 - 热成像(代表非接触局部技术)和基于振动的模态分析以及损伤检测方法(代表全局技术)。17.关键词 纤维增强聚合物 (FRP) 复合材料;修复;加固;维修;缺陷;分层;脱粘;无损评估;热成像;损伤检测;效果。
将生物的生物体视为转基因的生物(GMO),当将新的外国DNA片段或转基因插入以创建新的特征中时。生物技术领域目前正在快速发展,每天都会出现更多的特征和应用。由于对环境和生物体的关注,社会尚未接受这项技术。国家使用严格的生物安全方案来减少对此问题的恐惧,并使用多种机制检测DNA和GMO蛋白分子,以确保生物技术产品不含异物或以低于阈值的水平(如果存在)。基于这些样品中DNA和蛋白质的数量和质量,进行了这些检测。定量检测对于确定每个样品的转基因阈值至关重要。使用各种PCR(定性或定量)基于DNA的GMO检测是这些检测技术之一。确定在侧生物体中表达蛋白质多少的第二个最受欢迎的技术是基于蛋白质的检测。DNA微阵列,生物传感器,色谱和DNA测序均可用于查找GMO。准确和敏感的转基因生物检测技术的可用性使我们能够控制农作物,食物和成分来源中的转基因生物的存在。
13. 摘要 美国铁路协会 (AAR) 的子公司运输技术中心公司 (TTCI) 对无损检测 (NDT) 方法进行了评估,该方法被授权用于替代目前的静水压力试验,以对铁路油罐车进行鉴定或重新鉴定。该项目由联邦铁路管理局 (FRA) 提供资金并由油罐车行业合作完成。政府/行业努力取得的成果包括:1) 使用运输部 (DOT)/FRA 批准的 NDE 方法对四辆铁路油罐车进行基线评估;2) 开发验证方法以评估新的和现有的 NDE 技术;3) 对 DOT 111A 油罐车设计的横向对接焊缝进行基线检测概率 (POD) 评估;4) 启动包含油罐车和包含服务和人为诱导缺陷的油罐车部分缺陷库。所取得的成就为铁路油罐车行业以及政府、学术和商业组织提供了解决 HM 201 规则制定过程中出现的经济和可靠性问题的工具。14. 主题术语 15. 页数
1. 引言 安全和保障是航空活动中最重要的问题之一。确保飞机安全和保障的最重要阶段之一是对这些车辆进行维护。许多维护操作都是定期或每次飞行后和飞行前进行的,必要时还会进行故障排除操作。考虑到即使是一颗螺丝钉丢失也会危及飞行安全 [1],很明显维护操作必须非常小心地进行。根据现代护理计划程序 [2],维护有两种基本类型。它们被称为“航线维护”和“基地维护”。虽然航线维护比基地维护更肤浅,但它比基地维护执行得更频繁。飞行前、每日、每周或一定飞行时间后都被视为航线维护操作。飞机基地维护的关键步骤是控制冲击载荷 [3]。自然事件的影响,例如异物撞击,