新型冠状病毒病(Covid-19)最近大流行已在全球范围内传播并感染了数百万人。对严重急性呼吸综合征2(SARS-COV-2)的核酸的快速检测仍然是医疗保健提供者中的挑战。当前,定量逆转录 - 聚合酶链反应(RT-QPCR)是一种广泛使用的方法,可检测人类临床样品的SARS-COV-2。RT-QPCR是昂贵的设备,需要熟练的人员以及冗长的检测时间。RT-QPCR限制需要一种替代的医疗保健技术来克服快速,更便宜的检测方法。通过应用CRISPR技术原则,这是几种有前途的检测方法,为医疗保健社区提供了希望。基于CRISPR的检测方法包括Sherlock-Covid,stop-covid,aiod-crispr和检测平台。这些方法具有比较优势和缺点。在这些方法中,如果我们比较测试所花费的时间,与每个测试相关的成本以及它们在临床样本中检测SARS-COV-2的能力,则AIOD-CRISPR和检测是比其他方法更好的诊断方法。可能希望基于CRISPR的有前途的方法将促进CRISPR构建的下一代新型冠状病毒诊断中的护理点(POC)应用。
作者:U Yahaya · 2021 · 被引用 13 次 — 生物武器检测方法是军事防御最重要的手段之一。生物传感器用于武器的早期检测……
摘要 — 自动检测和去除脑电图 (EEG) 异常值对于设计强大的脑机接口 (BCI) 至关重要。在本文中,我们提出了一种新的异常值检测方法,该方法适用于样本协方差矩阵 (SCM) 的黎曼流形。现有的异常值检测方法存在错误地将某些样本拒绝为异常值的风险,即使没有异常值,因为检测基于参考矩阵和阈值。为了解决这一限制,我们的方法黎曼谱聚类 (RiSC) 基于提出的相似性度量将 SCM 聚类为非异常值和异常值,从而检测异常值。这考虑了空间的黎曼几何,并放大了非异常值簇内的相似性并削弱了非异常值和异常值簇之间的相似性,而不是设置阈值。为了评估 RiSC 的性能,我们生成了受不同强度和数量的异常值污染的人工 EEG 数据集。比较 RiSC 与现有异常值检测方法之间的 Hit-False (HF) 差异,证实 RiSC 可以显著更好地检测异常值 (p < 0.001)。特别是,对于异常值污染最严重的数据集,RiSC 对 HF 差异的改善最大。
当前的癌症检测方法在很大程度上取决于相应癌症抗原的成分分析。缺乏卵巢癌筛查的有效且简单的临床方法,这阻碍了早期对卵巢癌及其治疗的鉴定。为了开发一种简单而快速的方法来定量分析卵巢癌,我们开发了一种基于DNA链位移的方法,并在5分钟内通过一步等温反应在5分钟内完成了miR-21的快速检测。荧光强度轨迹与miR-21浓度在100 fm – 100 nm的范围内具有良好的线性关系,下限为6.05 pm。这种检测方法简单,更快且准确。此外,它可以通过更改toehold的预设序列来检测其他癌症的miRNA生物标志物。
基于循环肿瘤 DNA (ctDNA) 的分子分析正在通过多基因下一代测序 (NGS) 面板在晚期癌症患者的临床实践中迅速获得关注。然而,临床结果仍然描述不详,需要通过对血浆 ctDNA 中检测到基因组改变的患者进行个性化治疗来进一步验证。在这里,我们描述了通过 ctDNA 液体活检检测 InVisionFirst ® -Lung 在血浆中发现可操作改变的致癌成瘾晚期 NSCLC 患者的结果、3 个月时的疾病控制率 (DCR) 和无进展生存期 (PFS)。对 81 名晚期 NSCLC 患者进行了汇总回顾性分析,这些患者具有预测对目前 FDA 批准药物有反应的所有类型的改变:致敏常见 EGFR 突变(78%,n = 63)和 T790M(73%,46/63)、ALK / ROS1 基因融合(17%,n = 14)和 BRAF V600E 突变(5%,n = 4)。所有患者均通过先前的组织基因组分析确认了液体活检中检测到的可操作驱动改变,并且所有患者都接受了个性化治疗。在接受匹配靶向治疗的 82 名患者中,10% 为一线患者,41% 为二线患者,49% 为二线以上患者。 73% (46/63) 的患者在 TKI 复发时被检测到获得性 T790M,所有潜在患者 (34/46) 均根据 ctDNA 结果开始奥希替尼治疗。81 名可评估患者的 3 个月 DCR 为 86%。中位 PFS 为 14.8 个月 (12.1-22.9 个月)。基线 ctDNA 等位基因驱动基因分数与个性化治疗的反应率无关 (p = 0.29)。ctDNA 分子分析是一种准确可靠的工具,可用于检测晚期 NSCLC 患者中临床相关的分子改变。靶向治疗的临床结果支持将基于扩增子的 NGS ctDNA 分析液体活检用于晚期 NSCLC 患者的一线和复发检测。
基于循环肿瘤 DNA (ctDNA) 的分子分析正在通过多基因下一代测序 (NGS) 面板在晚期癌症患者的临床实践中迅速获得关注。然而,临床结果仍然描述不详,需要通过对血浆 ctDNA 中检测到基因组改变的患者进行个性化治疗来进一步验证。在这里,我们描述了通过 ctDNA 液体活检检测 InVisionFirst ® -Lung 在血浆中发现可操作改变的致癌成瘾晚期 NSCLC 患者的结果、3 个月时的疾病控制率 (DCR) 和无进展生存期 (PFS)。对 81 名晚期 NSCLC 患者进行了汇总回顾性分析,这些患者具有预测对目前 FDA 批准药物有反应的所有类型的改变:致敏常见 EGFR 突变(78%,n = 63)和 T790M(73%,46/63)、ALK / ROS1 基因融合(17%,n = 14)和 BRAF V600E 突变(5%,n = 4)。所有患者均通过先前的组织基因组分析确认了液体活检中检测到的可操作驱动改变,并且所有患者都接受了个性化治疗。在接受匹配靶向治疗的 82 名患者中,10% 为一线患者,41% 为二线患者,49% 为二线以上患者。 73% (46/63) 的患者在 TKI 复发时被检测到获得性 T790M,所有潜在患者 (34/46) 均根据 ctDNA 结果开始奥希替尼治疗。81 名可评估患者的 3 个月 DCR 为 86%。中位 PFS 为 14.8 个月 (12.1-22.9 个月)。基线 ctDNA 等位基因驱动基因分数与个性化治疗的反应率无关 (p = 0.29)。ctDNA 分子分析是一种准确可靠的工具,可用于检测晚期 NSCLC 患者中临床相关的分子改变。靶向治疗的临床结果支持将基于扩增子的 NGS ctDNA 分析液体活检用于晚期 NSCLC 患者的一线和复发检测。
长期以来使用的微生物检测方法是通过肉眼或低倍镜计数形成的菌落单位。另一方面,根据不同领域的要求,已经开发了几种快速微生物检测方法。这些开发的方法包括生物发光法,如阻抗法、荧光法和荧光激光扫描法等。这些方法适用于特定市场,但仍存在一些问题需要解决,例如,需要提高灵敏度、消除假阳性发生率和简化样品制备。本研究旨在建立一种新的微生物快速检测方法,结合特殊改性膜过滤器、基因工程生物发光试剂和超低光检测设备。该系统:RMDS 符合最终用户的要求,即“快速检测、消除假阳性可能性和易于样品制备”。R~IDS 方法通过控制几个元素、因素来验证其可靠性,因此也可以产生定量功能。用 RMDS 方法对高纯水进行测试,与传统 MF 方法相比,微生物检测速度快,回收率高。从评估结果来看,该系统适用于监测工艺用水,也适用于监测空气和固体表面的微生物。关键词:ATP、荧光素-荧光素酶、图像增强器、图像处理器、光子计数、生物发光、超低光检测器、MCP(ivlulti 通道板)
摘要:为了应对不断发展的网络威胁,入侵检测系统已成为网络安全的关键组成部分。与基于签名的入侵检测方法相比,基于异常的方法通常采用机器学习技术来训练检测模型,并具有发现未知攻击的能力。然而,由于数据分布不平衡,入侵检测方法面临少数群体攻击低检测率的挑战。传统的入侵检测算法通过重新采样或生成合成数据来解决此问题。此外,作为一种与环境相互作用以获得反馈和提高性能的机器学习方法,增强学习逐渐被考虑在入侵检测领域中应用。本文提出了一种基于增强的基于学习的入侵检测方法,该方法创新使用自适应样本分布双重体验重播来增强强化学习算法,旨在有效地解决样本分布不平衡的问题。我们还开发了专门为入侵检测任务设计的强化学习环境。实验结果表明,所提出的模型在NSL-KDD,AWID和CICIOT2023数据集上实现了有利的性能,从而有效地处理了不平衡的数据,并在检测少数群体攻击中显示出更好的分类性能。