摘要:本文提出了一种创新的方法,用于使用基于图像中中位绝对偏差(MAD)的自适应阈值方法来检测和量化混凝土裂纹。该技术应用有限的预处理步骤,然后根据像素的灰度分布,动态地确定适用于每个子图像的阈值,从而导致定制的裂纹分割。使用拉普拉斯边缘检测方法获得裂纹的边缘,并为每个中心线点获得裂纹的宽度。该方法的性能是使用检测概率(POD)曲线作为实际裂纹大小的函数来测量的,从而揭示了显着的功能。发现所提出的方法可以检测到狭窄至0.1 mm的裂纹,对于具有较大宽度的裂纹的概率为94%和100%。还发现该方法的精度,精度和F2分数值比OTSU和Niblack方法更高。
摘要。脑功能网络对于理解功能连接组至关重要。计算功能磁共振成像 (fMRI) 脑活动区域之间的时间依赖性,我们可以得到区域之间的功能连接。矩阵形式的成对连接对应于功能网络 (fNet),也称为功能连接网络 (FCN)。我们首先分析相关矩阵,它是 FCN 的邻接矩阵。在这项工作中,我们进行了一个案例研究,比较了在寻找脑网络节点社区时使用的不同分析方法。我们使用了五种不同的社区检测方法,其中两种方法是在过滤掉权重低于预定阈值的边后在网络上实施的。我们还计算并观察了结果的以下特征:(i) 社区的模块性,(ii) 大脑左右半球之间的对称节点分区,即半球对称性,以及 (iii) 分层模块组织。我们的贡献在于找到一个合适的测试平台,以比较使用不同语义的方法的结果,例如网络科学、信息论、多元分析和数据挖掘。
生成的AI技术提供了越来越多的工具来生成完全合成的图像,这些图像越来越与真实的图像。与改变图像的部分的方法不同,完全合成图像的创建提出了一个独特的挑战,最近似乎似乎已经对其进行了解决。然而,基准数据集的实验结果与野外方法的性能之间通常存在很大的差距。为了更好地满足SID的评估需求并帮助缩小差距,本文介绍了一个基准测试框架,该框架集成了几种最新的SID模型。我们选择集成模型的选择是基于各种输入功能和不同网络体系结构的利用,旨在涵盖广泛的技术。该框架利用了最新的数据集,这些数据集具有多种生成模型,高水平的照片现实主义和分辨率,这反映了图像合成技术的快速改进。此外,该框架还可以研究图像转换如何在在线共享的资产中(例如JPEG压缩)影响检测性能。sidbench可在github.com/mever- team/sidbench上获得,并以模块化的方式设计,以便于包含新的数据集和SID模型。
通讯作者:龚大峰(289133894@qq.com)。摘要 近年来,人工智能、深度学习和生成对抗网络(GAN)在深度伪造检测和取证方面的应用已成为一个新兴的研究领域。GAN自提出以来就得到了广泛的研究,并产生了许多应用来生成视频和图像等内容。这些新技术在许多领域的应用使得区分真假内容变得越来越困难。本研究分析了百余篇已发表的与GAN技术在各个领域应用生成数字多媒体数据相关的论文,阐述了可用于识别深度伪造的技术、深度伪造技术的好处和威胁以及如何打击深度伪造。研究结果表明,尽管深度伪造对我们的社会、政治和商业构成了重大威胁,但列出了多种手段来限制不道德和非法深度伪造的产生。最后,该研究还提出了其局限性以及未来可能的研究方向和建议。关键词:人工智能、深度学习、Deepfake、取证、GANs
摘要 — 糖尿病视网膜病变 (DR) 是一种复杂的疾病,结合来自患者病史、实验室结果或基因数据等多种来源的信息可以增进理解。眼科医生或自动化系统可以通过人工检查识别 DR。由于其成本效益和时间效率,糖尿病视网膜病变的自动检测已成为患者和医疗保健提供者的首选。这项研究的新颖之处在于开发了一种使用多模态数据融合预测糖尿病视网膜病变的模型,通过在长短期记忆 (LSTM) 网络中实现的早期融合技术,结合眼底视网膜图像、光学相干断层扫描 (OCT) 和电子健康记录 (EHR)。我们的模型利用多模态数据与局部二值模式 (LBP) 的早期融合,已展示出最佳性能,实现 AUC 值 0.99。这种高精度表明,整合来自各种数据源的信息可以显著提高模型检测糖尿病视网膜病变阳性和阴性病例的能力,从而增强我们对研究结果的可靠性的信心。
1 韩国仁荷大学电气与计算机工程系,仁川 22212;heeyong.kr@gmail.com 2 德克萨斯 A&M 大学金斯维尔分校电气工程与计算机科学系,金斯维尔,TX 78363,美国;taesic.kim@tamuk.edu * 通信:mklee@inha.ac.kr;电话。:+82-32-860-7456 † 本文是我们在 ICNGC 2021 上发表的作品的扩展版本,题为“Hee-Yong Kwon;Taesic Kim;Mun-Kyu Lee。一种用于工业控制系统的混合入侵检测方法”,其中我们提出了一种混合入侵检测方法。在这个完整版本中,我们进行了额外的实验来微调各种参数和异常检测标准。因此,我们进一步提高了异常检测的性能。此外,我们还证明了所提出方法在执行时间方面的效率。
维生素是维持正常生理功能所需的一类痕量物质。维生素可以大致分为水溶性和脂溶性维生素。水溶性维生素主要是B维生素。维生素缺乏症。例如,维生素B1缺乏会导致beriberi,维生素B12缺乏会导致巨型贫血。因此,维生素测试对于评估人体的营养状况和相关疾病的诊断具有重要意义。在这项研究中,使用Agilent Infinity LC临床版/K6460 TQ/LC MS系统来建立人血清中9种水溶性维生素的检测方法,以快速,全面地评估人体中含有水溶性维生素的状态。
摘要:表面裂纹是高速导轨(HSR)平板轨道中的典型缺陷,可以导致结构性恶化并降低轨道系统的服务可靠性。但是,如何有效检测和量化表面裂纹的问题目前尚未解决。在本文中,采用了一种基于红外热成像的新型裂纹检测方法来量化轨道板板上的表面裂纹。在这种方法中,首次使用非缩放的Contourlet变换(NSCT)基于图像 - 增强算法处理的红外摄像头的轨道平板的热合器,并且裂缝是通过边缘检测算法的。接下来,为了定量检测表面裂纹,提出了一种像素安排方法,从而可以获得裂纹宽度,长度和面积。最后,在实验室测试中验证了所提出方法在不同温度下的检测准确性,在该测试中,倒入平板的比例模型,并使用温度控制的柜子来控制温度变化过程。结果表明,所提出的方法可以有效地增强图像中表面裂纹的边缘细节,并且可以有效地提取裂纹区域。裂纹宽度的量化的准确性可以达到99%,而裂纹长度和面积的量化的准确性为85%,这基本上满足了HSR-SLAB-TRACK-TRACK-TRACK检查的要求。这项研究可以打开基于IRT的轨道板检查在HSR操作中的可能性,以提高缺陷检测的效率。
摘要 — 世界各地的体育官员都面临着难以置信的挑战,因为运动员为了提高比赛成绩而采取了不公平的训练手段。其中包括服用激素类药物或输血以增加力量和训练效果。然而,目前对这些情况的直接检测包括基于实验室的方法,但由于成本因素、医疗专家的可用性等原因,这种方法受到限制。这导致我们寻求间接测试。随着人工智能在医疗保健领域越来越受到关注,提出一种基于血液参数的算法来改善决策非常重要。在本文中,我们提出了一种基于统计和机器学习的方法来识别血液样本中兴奋剂物质 rhEPO 的存在。索引术语 — 血液兴奋剂、人工智能、药物滥用、rhEPO、世界反兴奋剂机构、体育
神经系统疾病的诊断是现代医学面临的最大挑战之一,也是当前的一个主要问题。脑电图 (EEG) 记录通常用于识别各种神经系统疾病。EEG 会产生大量的多通道时间序列数据,神经科医生可以通过视觉分析这些数据来识别和了解大脑内的异常及其传播方式。这是一个耗时、容易出错、主观且令人精疲力尽的过程。此外,EEG 分类的最新进展主要集中在使用 EEG 数据将特定疾病的患者与健康受试者进行分类,这种方法成本效益不高,因为它需要多个系统来检查受试者的 EEG 数据以查找不同的神经系统疾病。这迫使研究人员推进他们的工作,并创建一个统一的分类框架,用于从 EEG 信号数据中识别各种神经系统疾病。因此,本研究旨在通过开发一种基于机器学习 (ML) 的数据挖掘技术来满足这一要求,以从 EEG 数据中对多种异常进行分类。纹理特征提取器和基于 ML 的分类器用于时频谱图图像以开发分类系统。首先,使用滤波技术从信号中去除噪声和伪影,然后进行归一化以降低计算复杂度。之后,将归一化信号分割成小的时间段,并使用短时傅里叶变换从这些时间段生成频谱图图像。然后使用两个基于直方图的纹理特征提取器分别计算特征,并使用主成分分析从提取的特征中选择显著特征。最后,使用四种不同的基于 ML 的分类器将选定的特征归类为不同的疾病类别。在四个实时 EEG 数据集上测试了所开发的方法。所得结果显示出对各种异常类型进行分类的潜力,表明可以利用它从脑信号数据中识别各种神经系统异常。