摘要。尽管人们对机器学习研究的兴趣正在显著增长,尤其是在医学领域,但研究结果与临床相关性之间的不平衡比以往任何时候都更加明显。造成这种情况的原因包括数据质量和互操作性问题。因此,我们旨在检查公开的标准心电图 (ECG) 数据集中站点和研究特定的差异,理论上这些数据集应该通过一致的 12 导联定义、采样率和测量持续时间实现互操作。重点在于即使是轻微的研究特性是否会影响训练有素的机器学习模型的稳定性。为此,研究了现代网络架构以及无监督模式检测算法在不同数据集上的性能。总的来说,这是为了检查单点心电图研究的机器学习结果的泛化。
道路缺陷检查是维持良好的运输基础设施的至关重要的任务,因为道路表面障碍会影响用户的舒适性,降低车辆零件的寿命并造成道路伤亡。近年来,由于其出色的性能和高计算能力的可用性,机器学习在包括对象检测在内的各个领域都得到了广泛的调整,这通常是其模型培训所需的。许多作品都使用基于机器学习的对象检测算法来检测缺陷,例如建筑物和道路中的裂缝。在这项工作中,使用自定义的道路裂缝和坑洼数据进行了Yolov5,Yolov6和Yolov7模型,并对其性能进行了评估和比较。数据集中的实验表明,Yolov7的性能最高,MAP@0.5得分为79.0%,推理速度为0.47 m,用于255个测试图像。
许多无监督的异常检测算法依赖于最近的邻居的概念来计算异常得分。这种算法很受欢迎,因为对数据没有任何假设,这使它们成为非结构化数据集的强大选择。然而,严重影响模型性能的最近邻居的数字(k)不能在无监督的设置中调整。因此,我们提出了新的和无参数的分析隔离和基于距离的异常(AIDA)检测al-gorithm,将距离的指标与隔离相结合。基于AIDA,我们还介绍了基于钢化的隔离解释(TIX)算法,该算法确定了最相关的特征,即使在大型多维数据集中,也可以提高离群值,从而提高了检测机制的整体解释性。AIDA和TIX都经过了彻底的测试,并将其与最先进的替代方案进行了比较,事实证明是对异常检测中现有工具集的有用补充。
木马(后门)攻击是针对深度神经网络的一种对抗性攻击,攻击者向受害者提供一个在恶意数据上训练/再训练的模型。当正常输入带有某种称为触发器的模式时,后门就会被激活,从而导致错误分类。许多现有的木马攻击的触发器是输入空间块/对象(例如,纯色多边形)或简单的输入转换,如 Instagram 滤镜。这些简单的触发器容易受到近期后门检测算法的影响。我们提出了一种新颖的深度特征空间木马攻击,具有五个特点:有效性、隐蔽性、可控性、鲁棒性和对深度特征的依赖。我们对包括 ImageNet 在内的各种数据集上的 9 个图像分类器进行了大量实验,以证明这些特性,并表明我们的攻击可以逃避最先进的防御。
在本研究中,我们开发了一个针对孤立纹状体的大规模生物物理网络模型,以通过使用网络产生的时空模式来优化潜在的纹状体内深部脑刺激,例如应用于强迫症。该模型使用改进的 Hodgkin-Huxley 小世界连接模型,而空间信息(即神经元的位置)是从详细的人体图谱中获得的。该模型产生将健康与病理状态区分开的神经元活动模式。使用三个指标来优化刺激方案的刺激频率、幅度和定位:整个网络的平均活动、腹侧纹状体区域的平均活动(使用模块化检测算法出现为定义的社区)以及整个网络活动的频谱。通过最小化上述指标与正常状态的偏差,我们指导深部脑刺激参数的位置、幅度和频率的优化。
本文提出了一种利用多旋翼无人机跟踪移动地面车辆并着陆的自主系统。详细讨论了该系统的技术开发。包括传感器选择与集成、目标检测算法与实现、无人机数学模型和飞行控制器设计。该系统利用近红外摄像机,即使在夜间或低照度下也能检测到标记,无人机机载处理器频率高达 18 Hz。整个系统首先在 MATLAB 中仿真,然后应用于实际无人机。小型四旋翼无人机在移动的小型卡车上自主着陆的成功飞行试验表明,该设计有效且适用于实际应用。提出的视觉激光目标跟踪性能在静态标记下实现了 99.2% 的成功率,在移动标记下实现了 94.4% 的成功率。
大于 80 Hz 的高频振荡 (HFO) 具有独特的特征,可将其与时频表示中可以充分证明的尖峰和伪影成分区分开来。我们引入了一种无监督的 HFO 检测器,它使用计算机视觉算法在二维 (2D) 时频图上检测 HFO 标志。为了验证检测器,我们引入了一个基于具有高斯包络的正弦波的 HFO 分析模型,可以推导出时频空间中的解析方程,这使我们能够在时域中常见的 HFO 检测标准与计算机视觉检测算法使用的频域标准之间建立直接对应关系。检测器在时频表示上识别潜在的 HFO 事件,如果满足有关 HFO 频率、振幅和持续时间的标准,则将其归类为真正的 HFO。根据分析模型,在存在噪声的情况下,对检测器进行了模拟 HFO 的验证,信噪比 (SNR) 范围从 -9 到 0 dB。检测器的灵敏度在 SNR 为 -9 dB 时为 0.64,在 -6 dB 时为 0.98,在 -3 dB 和 0 dB 时 > 0.99,而其阳性预测值均 > 0.95,无论 SNR 如何。使用相同的模拟数据集,我们的检测器与四个之前发布的 HFO 检测器进行了对比。F 度量是一种同时考虑灵敏度和阳性预测值的组合指标,用于比较检测算法。我们的检测器在 -6、-3 和 0 dB 时超越其他检测器,在 -9 dB SNR 时拥有仅次于 MNI 检测器的第二好 F 分数(0.77 对 0.83)。研究人员在 6 名患者的一组 36 个颅内脑电图 (EEG) 通道上测试了在临床记录中检测 HFO 的能力,其中 89% 的检测结果由两名独立审阅者验证。结果表明,基于时频图中的 2D 特征对 HFO 进行无监督检测是可行的,并且其性能与最常用的 HFO 检测器相当或更好。
背景:癫痫猝死 (SUDEP) 是仅次于中风的神经系统事件,可导致数年的潜在寿命损失。发作后全身性脑电图 (EEG) 抑制 (PGES) 是大脑活动受到抑制的一段时间,通常发生在全身性强直阵挛性癫痫发作之后,这是 SUDEP 的最重要风险因素。因此,PGES 已被视为 SUDEP 风险的潜在生物标志物。自动 PGES 检测工具可以解决劳动密集型且有时不一致的视觉分析的局限性。成功的自动 PGES 检测方法必须克服与检测 EEG 记录中可能包含生理和采集伪影的细微幅度变化有关的计算挑战。目标:本研究旨在提出一种随机森林方法,用于使用在癫痫监测单元中获取的多通道人体 EEG 记录自动检测 PGES。方法:我们使用来自 EEG 信号的时间、频率、小波和通道间相关特征的组合来训练随机森林分类器。我们还根据 PGES 状态变化构建并应用了基于置信度的校正规则。受实用性的启发,我们引入了一种新的基于时间距离的评估方法来评估 PGES 检测算法的性能。结果:基于时间距离的评估表明,对于无伪影信号,我们的方法实现了 5 秒容差的阳性预测率为 0.95。对于具有不同伪影水平的信号,我们的预测率从 0.68 到 0.81 不等。结论:我们引入了一种基于特征的随机森林方法,用于使用多通道 EEG 记录自动检测 PGES。我们的方法在降低信号伪影水平的同时实现了越来越好的基于时间距离的性能。需要进一步研究 PGES 检测算法是否能在任何信号伪影水平下表现良好。
摘要 — 检测网络结构时间序列数据的变化对于各种关键应用至关重要,例如检测针对在线服务提供商的拒绝服务攻击或监控能源和供水。本文旨在应对异常激活网络中未知节点组时的这一挑战。我们设计了一种在线变点检测算法,该算法充分利用图信号处理的最新进展来利用位于不规则支撑上的数据特性。它基于内核机制构建,以在线方式执行密度比估计。该算法具有可扩展性,因为它在空间分布于节点上以监控大规模动态网络。通过模拟数据说明了该算法的检测和定位性能。索引词 — 图信号处理、流图信号、非参数变点检测、图过滤。