执行摘要 • 陆军 FOT&E 和合作脆弱性和渗透性评估 (CVPA) 的初步结果表明,AN/APR-39D(V)2 雷达信号检测装置安装在陆军 AH-64 上是有效且合适的。它之所以有效,是因为 D(V)2: - 总体而言,及时宣布威胁射频发射器。- 总体而言,为 AH-64 机组人员提供足够的态势感知,以识别所需的威胁系统并执行规定的战术、技术和程序 (TTP)。- CVPA 未发现任何特定的 D(V)2 漏洞。• 它之所以合适,是因为少数软件故障对任务的影响很小,因为 D(V)2 系统可以立即自动从每次故障中恢复,而无需机组人员采取行动。• 海军开发测试发现了与 MV-22B 飞机集成相关的几个关键缺陷。
EELS 技术已应用于材料科学,以单原子灵敏度绘制元素图谱 5–7,并应用于生物科学,以检测和量化多种内源性元素。8–11 EELS 技术可应用于透射电子显微镜 (TEM) 模式,通常称为能量过滤 TEM (EFTEM) 12–16,或应用于扫描透射电子显微镜 (STEM) 模式,称为 STEM-EELS 或 EELS 光谱成像。17–22 虽然 EFTEM 模式的灵敏度低于 STEM-EELS,但它提供的视野更大,至少大一个数量级,通常为 105–107 像素,而 STEM-EELS 为 103–105 像素。 10,17 对于某些生物应用,更宽广的视野与分辨率或灵敏度同样重要,例如使用彩色 EM 电子探针同时标记细胞中的多种细胞蛋白质/细胞器。23–25 在我们开发的方法中,通过依次沉积与二氨基联苯胺结合的特定镧系元素螯合物来实现多个目标分子的定位,这些螯合物被正交光敏剂/过氧化物酶选择性氧化。23 然后将通过 EFTEM 模式获得的镧系元素的芯损耗或高损耗(M 4,5 边缘)元素图/图以伪彩色叠加到常规电子显微照片上以创建彩色 EM 图像。23,26,27
鳗鱼技术已应用于材料中,以绘制单个原子敏感性5-7和生物科学的映射元素,以检测和量化许多内部元素。8–11鳗鱼技术可以在透射电子显微镜(TEM)模式中应用,通常称为能量过滤TEM(EFTEM)12-16或扫描透射透射电子显微镜(STEM)模式,称为Stem-Eels或EELS Spectrum-Imimiganging。17–22尽管EFTEM模式的灵敏度低于Stem-Eels,但它提供了更大的视野,至少要大的数量级,通常为10 5 –10 7像素,而茎 - 茎中的10 3 –10 5像素。10,17对于某些生物学应用,更包含的视野与分辨率或灵敏度一样重要,就像将颜色EM电子探针应用于同时在细胞中标记多个细胞蛋白/细胞器的情况一样。23–25在我们开发的方法中,多个靶向分子的定位是通过序列沉积与二氨基苯胺结合的序列沉积来实现的,二氨基苯胺被正交光泽剂/过氧化物酶选择性地氧化。23然后,通过EFTEM模式获得的LAN比的核心损坏或高损坏(M 4,5边)元素图/地图在伪色中叠加在传统的电子显微照片上,以创建颜色的EM图像。23,26,27
量子照明使用纠缠信号-闲置光子对来提高在具有明亮热噪声的环境中对低反射率物体的检测效率。其优势在低信号功率下尤其明显,这对于非侵入性生物医学扫描或低功率短程雷达等应用来说是一个有前途的特性。在这里,我们通过实验研究了微波频率下量子照明的概念。我们在自由空间检测装置中生成纠缠场来照射距离 1 米的室温物体。我们实现了基于线性正交测量的数字相位共轭接收器,尽管信号路径破坏了纠缠,但在相同条件下,其性能优于对称经典噪声雷达。从实验数据开始,我们还模拟了完美闲置光子数检测的情况,与相对经典基准相比,这产生了量子优势。我们的结果突出了微波量子电路首次在室温应用过程中面临的机遇和挑战。
摘要:荧光检测是目前世界范围内常用的技术之一。本文讨论了一种有趣的复合材料的制备和光学特性。结果表明,将溶胶-凝胶自燃法获得的钴尖晶石铁氧体 (CoFe 2 O 4 ) 封装到聚[二苯基-甲基 (H)]硅烷基质中,可得到具有有趣光学特性的氟磁性粒子 (PSCo)。透射电子显微镜结合能量色散 X 射线分析显示,500 nm 大的球形结构包含一个由磁性铁氧体颗粒组成的核心(直径约 400 nm),周围包裹着一层薄薄的半导体荧光聚合物。所获得的材料表现出亚铁磁性。FTIR 光谱证实聚硅烷的 Si-H 功能得以保留。紫外光谱结合分子建模研究表明,磁芯对 σ 共轭聚硅烷分子内电子跃迁特性有很强的影响。稳态荧光光谱的进一步分析表明,内部磁场大大增强了聚硅烷的发射。未来将进一步研究这一特性,以开发新的检测装置。
本文展示了一种使用脉搏血氧仪、加速度计和振动传感器开发的癫痫发作检测装置。开发过程中还使用了 9V 电池、LM2596 稳压器和两个 ESP32 微控制器。脉搏血氧仪是一种传感器,其目的是测量患者的活动水平:血氧饱和度和心率。加速度计检测患者身体的运动或活动,这可能表明可能发生癫痫发作。另一方面,振动传感器检测到癫痫发作期间表现出的急促身体运动,有助于提高癫痫发作检测模型的效率。ESP32 微控制器与所提议设备中的传感器连接,以实现数据收集和传输。添加了 LM2596 稳压器以确保 9V 电池的电源始终开启。每当发生癫痫发作时,Blynk 应用程序都会向护理人员提供通知或警报。对于癫痫患者来说,该设备通过提供快速干预和及时监测,确保了他们的安全和生活质量。通过集成不同类型的传感器和微控制器,可以实现完整的癫痫发作检测,而 Blynk 应用程序可以确保与护理人员进行适当的沟通,从而有效、高效地管理护理。
抽象溺水是一个重要的公共健康问题。视频溺水检测算法是找到溺水受害者的有用工具。但是,溺水研究研究的三个挑战通常会遇到:缺乏实际的溺水视频数据,微妙的早期溺水特征以及缺乏实时时间。在本文中,作者提出了一个水下计算机视觉的溺水检测装置,该检测设备由嵌入式AI设备,相机和防水外壳组成,以解决上述问题。检测设备利用Jetson Nano的高性能计算通过在获得的水下视频流中提出的溺水检测算法实现溺水事件的实时检测。所提出的溺水检测算法主要由两个阶段组成:在第一步中,成功地解决了周围环境的干扰,并为视频溺水检测提供了值得信赖的基础,Yolov5N网络用于根据溺水者的特征来检测近事实的人体。在第二阶段,作者提出了一个基于深层高斯模型,用于快速特征向量检测。轻巧的DDN与高斯模型相结合,以检测高级语义特征的异常,该功能具有更高的鲁棒性,并解决了缺乏溺水视频的缺乏。实验结果表明,所提出的溺水检测算法具有良好的全面性能和实际应用值。
结论试纸分析是一种 POCT 设备,用于尿液分析,用于诊断各种疾病,尿液中存在的一系列分析物由技术人员进行视觉分析。由于色盲或偏见等视觉问题,这可能会出现人为错误。人工智能 (AI) 可以解决这个问题,其中软件通过分析大量已知结果的训练数据来识别模式并自动确定准确的结果。进一步研究的主要目的是 (1) 扩展和改进模型以提高初步工作的准确性,(2) 通过有效地训练针对更大数据集的定制模型来减少检测错误,(3) 在服务器中部署相同的模型以方便访问,并同时远程服务多个子/客户端设备,以及 (4) 调整此预测过程以提高成本效益。这项研究将使医生和患者能够获得准确、快速、可靠的诊断结果,而不会出现任何人为偏见或错误。
最近提出了一种容错方法来准备 Q 1 码的逻辑码态,即编码一个量子比特的量子极性码。其中的容错性由错误检测装置保证,如果在准备过程中检测到错误,则完全丢弃准备。由于错误检测,准备是概率性的,其成功率(称为准备率)随代码长度的增加而迅速下降,从而阻止了大代码长度的代码状态的准备。在本文中,为了提高准备率,我们考虑工厂准备 Q 1 码态,其中尝试并行准备多个 Q 1 码态副本。使用额外的调度步骤,我们可以避免每次检测到错误时完全丢弃准备,从而反过来提高准备率。我们进一步提供了一种理论方法来估计使用工厂准备准备的 Q 1 码的准备和逻辑错误率,该方法被证明与基于蒙特卡洛模拟的数值结果紧密相关。因此,我们的理论方法可用于为大代码长度提供估计,而蒙特卡罗模拟实际上并不可行。对于电路级去极化噪声模型,我们的数值结果表明准备率显著增加,特别是对于较大的代码长度 N 。例如,对于 N = 256 ,对于实际有趣的物理错误率 p = 10 − 3 ,它从 0.02% 增加到 27%。值得注意的是,N = 256 的 Q 1 码在 p = 10 − 3 和 p = 3 × 10 − 4 时分别实现了大约 10 − 11 和 10 − 15 的逻辑错误率。与具有相似代码长度和最小距离的表面码相比,这相当于提高了大约三个数量级,从而表明所提出的方案用于大规模容错量子计算的前景。
伊朗德黑兰马列卡什塔尔理工大学生物科学与生物技术系 *通讯作者:电子邮件地址:molaeirad@gmail.com (A. Molaei rad) 摘要 微悬臂 (MCL) 是一种经济高效、灵敏度高的生物检测装置。特定分析物在微悬臂表面的吸附会通过改变表面特性导致 MCL 弯曲。这些新型生物探针的设计方式是,微悬臂表面的一侧涂有可吸收特定分子的选择性受体。表面吸收目标后,微悬臂在纳牛顿力的作用下偏转,导致微悬臂弯曲。在以下工作中,我们提出了一种改进的微悬臂,通过将单胺氧化酶 (MAO) 固定为含黄素腺苷二核苷酸 (FAD) 的酶。该酶催化胺基的氧化脱氨,因此具有胺基官能团的化合物与酶之间的相互作用基于用单胺氧化酶修饰的微悬臂进行生物检测。在本研究中,MAO 通过交联剂固定在微悬臂表面的金表面单层上。随后,以犬尿胺溶液为底物。比较结果表明,该酶在固定状态下被激活以氧化胺基,而在甲基苯丙胺作为酶抑制剂存在下被抑制。由于所有过程都在室温下进行,因此基于修饰的微悬臂的生物探针设计对于生物检测具有重要意义。关键词:单胺氧化酶;微悬臂;固定化;生物检测;甲基苯丙胺。引言生物传感器是监测分子与固体表面上固定的生物受体之间分子相互作用的强大装置 [1]。随着微机电系统 (MEMS) 的发展,人们一直对设计低成本分析方法很感兴趣 [2]。其中,微悬臂是最简单的 MEMS,广泛应用于生物检测 [3]。基于微机械悬臂 (MC) 的传感器已被研究用于检测化学和生物物种 [4,5]。用于化学或生物传感的 MC 通常通过在悬臂的一侧涂覆对目标配体具有高亲和力的响应相来修改。由于配体在敏感表面上的结合而引起的表面应力变化被解析以进行检测。悬臂换能器在生物传感器、生物微机电系统 (Bio-MEMS)、蛋白质组学和基因组学中的潜在用途包括