在书籍搜索中,应返回有关查询的相关书籍信息。书籍包含复杂的,多方面的信息,例如元数据,大纲和主要文本,其中大纲在章节和各节之间提供了层次的信息。生成检索(GR)是一种新的检索范式,将语料库信息固定到单个模型中,以生成与给定查询相关的文档标识符。如何将GR应用于书籍搜索?直接将GR应用于书籍搜索是一个挑战,因为书籍搜索的独特特征:(i)该模型需要保留该书的复杂,多面信息,从而增加了对标记数据的需求。(ii)将书籍信息分开并将其视为单独的学习部分的集合,可能会导致层次信息的丢失。我们为B OOK S EARCH(GBS)提出了一个有效的G能量检索框架,该框架具有两个主要组成部分:(i)数据元素和(ii)面向轮廓的书籍编码。为了进行数据增强,GBS构建了多个查询书对培训;它根据大纲,各种形式的书籍内容构建了多个书籍标识符,并模拟了带有多样化的伪Queries的真实书检索场景。这包括启动覆盖范围的书标识符的增强,允许该模型学会索引
从结果列表中单击已公布专利申请号或其标题即可查看全文版本。单击页面顶部的蓝色“图像”按钮可查看已公布申请的 pdf 图像。查看每份已公布专利申请的首页,特别注意摘要和代表性附图。记下与您的发明相似的已公布专利申请的数量。使用这组选定的最相关的美国已公布专利申请,现在深入审查每一份申请与拟议发明的相似性,密切关注已公布申请的其他部分 - 附加附图页面、说明书,尤其是权利要求。打印或下载最相关的美国已公布专利申请的副本。
在043 A高维空间中启用其语义相似性。044但是,此相似性计算过程045面临几个挑战。首先,查询与文档047之间的复杂SE-046摩西关系映射到标量相似性,该标量相似性无法重新触及足够的信息,并且很难在049架上持平(Brito and Iser,2023)。第二,当与长期文档进行交易时,例如具有256、051 512或更多令牌的文件,确定了与查询最相关的第052节,并且对相似性最大的053贡献最高的053是非常可取的,但挑战是挑战 - 054(Luo等人),2024; Günther等。,055 2024)。此外,许多NLP任务,例如SEN- 056 TENCE选择,搜索结果突出显示,针头057在干草堆中(Liu等人。,2024b; An等。,2024; 058 Wang等。,2024)和细粒度引用(Gao 059等人,2023;张等。,2024),需要对文本的深度和060细粒度的理解。061鉴于需要对细粒度的理解的需求,062只是将整个文档与查询保持一致的双重编码器似乎不足,因为它的召开对比损失主要强调全局065语义(Khattab和Zaharia,2020年)。com-066 pllement re-067 Triever的核心定位能力,我们提出了一个新颖而充满挑战的乐趣 - 068 damental问题:我们可以增强和整合069现有070检索器的信息本地化能力而无需牺牲其固有检索能力吗?首先,083072为了应对这些挑战,我们提出了一个073新颖的方法齿轮(ge neration-a u摘要074 r etrieval)。具体来说,我们将数据构建为075(查询文档信息)的三元组,但仍使用076对比度学习来优化相似度为-077 deween the查询和文档。在相同的078时间,我们设计了一个文本解码器,以在文档080中生成Rel-079 Evant Evant Evant-evant Ever-Graining信息,以增强RE-081 recy-081 threval和本地化功能。尽管082概念很简单,但仍有许多挑战。
计算机视觉的最新进展允许在生活的每个领域进行广泛的应用,而农业并未遗漏。对于农业食品行业来说,先进技术的使用至关重要。由于深度学习能够从图像中学习强大功能的能力,因此它在几个领域中见证了巨大的应用。水果检测和分类仍然具有挑战性。在研究计算机视觉对水果检测和策略的影响时,我们指出,直到2018年,许多常规的机器学习方法都被利用了,而一些方法利用了深度学习方法用于水果检测和分类。tis促使我们对测量和实施深度学习模型进行水果检测和分类进行了广泛的研究。在本文中,我们深入讨论了许多学者,实际描述符,模型的实现以及使用深度学习来检测和分类水果的挑战。最后,我们总结了先前研究中应用的不同深度学习方法的结果,以进行水果检测和分类。审查涵盖了最近发表的文章的研究,这些文章利用深度学习模型进行水果识别和分类。此外,我们还使用流行的数据集“水果360”从头开始实施了一种深度学习模型,以使农业领域的初学者更容易了解深度学习在农业领域中的作用。
首先,我要感谢Kpalma Kidiyo教授和Zhang Lu教授接受我的博士学位。学生,这为我提供了更深入研究科学研究领域的机会。他们的专业指导和卓越的学术专业知识使我能够获得宝贵的知识,这将使我一生都受益。我要感谢Bai Cong教授在到达法国之前和之后的众多澄清,协助和指导。我感谢Wang Qiong博士在我们的研究努力中的帮助和协作。我想对CSC/UT-INSA计划的老师和同学表示感谢。我要感谢父母的无条件爱与支持。最后但并非最不重要的一点是,我要感谢我的妻子丁·阿南(Ding Anan)的陪伴和监督。她的信任是我的燃料,她的安慰是我的避难所。我还要对我九个月大的女儿表示感谢,她的每一个微笑都价值十杯即时咖啡。见证多模式领域的快速发展,尤其是在我的博士学位期间,这确实是显着的。学生研究。每天带来新的和令人兴奋的多模式算法。在起草本手稿时,我遇到了许多新兴和改变游戏的多模式作品。然而,多模式遇到了几个挑战,包括无法解释性,基础计算资源需求以及伪造传播的风险。自然,每一个新兴的学科都带来了许多挑战。需要解决这些问题,以提高多模式系统的可靠性和效率。最后,我想介绍在计算机图形快速开发时代写的书中写的两个引号[1]。
随着计算机视觉的快速发展,3D数据正在迅速增加。如何从大量模型中检索类似模型已成为一个热门研究主题。但是,为了满足人们的需求,需要进一步提高检索准确性。在多视图3D模型检索方面,如何有效地学习视图之间的信息是提高性能的关键。在本文中,我们提出了一种基于注意力和多视图融合的新型3D模型检索算法。具体来说,我们主要构建了两个模块。首先,动态的专注图学习模块用于学习视图块之间的内在关系;然后,我们提出了注意力网络算法,该算法结合了通道注意算法和NetVlad算法。,它根据特征通道之间的信息来学习特征通道之间的信息,以增强特征表达能力,然后使用NetVlad算法根据聚类信息将多个视图功能融合到全局特征中。本质上,全局特征是根据欧几里得距离来检索的模型的唯一功能。与使用ModelNet10和ModelNet40的其他最新方法相比,该方法证明了检索图的显着改善。我们的实验还证明了模块在算法中的有效性。
此报告会生成一份患者姓名、出生日期、最近一次疫苗接种日期以及当前应接种或已过期的疫苗的列表。此报告中的患者在上次到您所在机构/诊所的免疫接种就诊时接种了一剂或多剂疫苗,但患者并未接种 ACIP 推荐的所有疫苗。