摘要。在卫星遥感应用中,增强了2级(L2)算法的精度,在很大程度上依赖于对紫外线(UV)(uv)的表面反射的准确估计(visible(vis)光谱。然而,L2算法与表面反射检索之间的相互依赖性构成了挑战,因此需要采取另一种方法。为了解决这个问题,许多卫星属性会产生兰伯特等效的反射性(LER)产品作为先验的表面反射数据。但是,这通常会导致这些数据低估。这项研究是使用半经验的双胎反射分布函数(BRDF)模型得出的背景表面反射(BSR)的适用性的第一个。这项研究将BRDF模型的应用在440 nm处的高光谱卫星数据进行了应用,旨在提供更现实的前段表面反射数据。在这项研究中,使用了地理环境监测光谱仪(GEMS)数据,对GEMS BSR和GEMS LER进行了比较分析显示,相对根平方误差(RRMSE)的精度有3%的相对根平方误差(RRMSE)的精度有所提高。此外,跨不同土地类型的时间序列分析表明,BSR比LER表现出更大的稳定性。为了进一步验证,使用地面真实数据将BSR与其他LER数据库进行了比较,从而产生
摘要....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2
填字游戏 (CP) 解析是一种流行的游戏。与几乎所有其他人类游戏一样,可以自动解决这个问题。CP 求解器将其纳入约束满足任务,其目标是最大限度地提高用与线索一致并与谜题方案连贯的答案填充网格的概率。这些系统(Littman 等人,2002 年;Ernandes 等人,2005 年;Ginsberg,2011 年)严重依赖于每个线索的候选答案列表。候选答案的质量对 CP 解析至关重要。如果正确答案不在候选列表中,则无法正确解答填字游戏。此外,即使是排名较差的正确答案也会导致填字游戏填写失败。答案列表可以来自多个求解器,其中每个求解器通常专门解决不同类型的线索,和/或利用不同的信息来源。此类列表主要通过两种技术检索:(1)使用线索表示通过搜索引擎查询网络;(2)查询包含先前回答过的线索的线索-答案数据库。在本文中,我们专注于后者。在从线索-答案知识源中检索候选答案的问题中,答案根据查询线索与数据库中的线索之间的相似性进行排序。相似性由搜索引擎提供,搜索引擎为每个检索到的答案分配一个分数。已经实施了几种方法,通过学习排序策略对候选列表进行重新排序(Barlacchi 等人,2014a;Barlacchi 等人,2014b;Nicosia 等人,2015;Nicosia 和 Moschitti,2016;Severyn 等人,2015)。这些方法需要一个训练阶段来学习如何排序,并且大多数情况下在重新排序方面有所不同。
DTI 通知:230419-01 主题:军事记录检索过渡影响:退休和退役空军成员 BLUF:军事记录检索功能现已在 myFSS 上可用。已在 myPers 中提交的事件将继续在 myPers 中处理。从即日起,退休和退役空军成员应使用 myFSS 提交军事记录检索请求。通过 myPers 提交的事件将不再被接受,需要通过 myFSS 提交。myPers 中的先前事件将被处理。请不要通过 myFSS 提交重复请求。要在 myFSS 中提交新请求,请导航至 myFSS 登录页面,然后在位于页面顶部的知识文章搜索栏中输入知识文章的标题:
摘要生成AI(Genai)和自然语言处理(NLP)近年来已经显着提高,表现出突破并推动了文本挖掘中的准确率。在许多应用程序域中都观察到级联效应,涵盖文本分析,问答,分类和新的文本内容生成。后者允许许多最终用户将AI视为现成的解决方案,以优化其日常工作流程。然而,由于可信赖和未经验证的内容可以轻松产生,黑暗和明亮的侧面潜伏在文本内容产生后面。这在我们的社会中引起了重大挑战:假新闻。尽管假新闻已经存在一段时间,但它仍然是一个未解决的问题。生成的AI通过实现自动生产大量高质量的,单独针对的假件内容来将其提高到一个新的水平。我们的工作是Loyfanmi(与健康相关的虚假新闻)项目的一部分,该项目的重点是使用NLP,语言模型和检索功能增强的生成(RAG)系统来缓解与健康有关的假新闻。我们提出了一种新的块机制,该机制简化了整个抹布框架管道。Bert和Bert+RAG已在2000年与健康相关的文章的数据集中进行了比较,将与健康相关的假新闻分类任务进行了比较,分为两类(“假”和“可信”)。初步实验结果揭示了准确性,回忆和F1得分的提高。
基于关键字的搜索是当今数字库中的标准。然而,像科学知识库中的复杂检索场景一样,需要更复杂的访问路径。尽管每个文档在某种程度上有助于一个领域的知识体系,但关键字之间的外部结构,即它们的可能关系以及每个单个文档中跨越的上下文对于有效检索至关重要。遵循此逻辑,可以将单个文档视为小规模的知识图,图形查询可以提供重点文档检索。我们为生物医学领域实施了一个完全基于图的发现系统,并证明了其过去的好处。不幸的是,基于图的检索方法通常遵循“确切的匹配”范式,该范式严重阻碍了搜索效率,因为确切的匹配结果很难按相关性进行排名。本文扩展了我们现有的发现系统,并贡献了有效的基于图的无监督排名方法,一种新的查询放松范式和本体论重写。这些扩展程序进一步改善了系统,因此由于部分匹配和本体论重写,用户可以以更高的精度和更高的回忆来检索结果。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
目前,放射科医生面临着过大的工作量,这导致他们高度疲劳,并因此导致不必要的诊断错误。决策支持系统可用于确定优先级并帮助放射科医生做出更快的决策。从这个意义上说,基于医学内容的图像检索系统可以通过提供精心策划的类似示例发挥极大的作用。尽管如此,大多数基于医学内容的图像检索系统都是通过查找最相似的图像来工作的,这并不等同于查找疾病及其严重程度最相似的图像。在这里,我们提出了一种可解释性驱动和注意力驱动的医学图像检索系统。我们在一个大型的公开可用的胸部 X 光片数据集中进行了实验,该数据集带有来自自由文本放射学报告 (MIMIC-CXR-JPG) 的结构化标签。我们在两种常见情况下评估了这些方法:胸腔积液和(潜在)肺炎。作为进行评估的地面实况,查询/测试和目录图像由经验丰富的委员会认证的放射科医生进行分类和排序。为了进行深入而全面的评估,其他放射科医生也提供了他们的排名,这使我们能够推断出评分者之间的差异,并得出定性的表现水平。根据我们的地面实况排名,我们还通过计算归一化的折现累积增益 (nDCG) 对所提出的方法进行了定量评估。我们发现,可解释性引导方法优于其他最先进的方法,并且与最有经验的放射科医生的一致性最好。此外,它的表现在观察到的评分者之间的差异范围内。
大规模检索系统(例如搜索连接)一直是帮助人们访问大量在线信息的重要工具。各种技术来提高检索质量。由于从查询文本中进行计算搜索的困难以及准确代表文档要求的语义含义,大多数以前的研究都是基于经典的术语加权方法,例如BM-25(Robertson和Zaragoza,2009年)或TF-IDF(SpärckJones,1972年,1972年,或单词)或单词(MIK)或单词(MIK)或单词。,2013年)在关键字匹配可以解决的情况下表现良好。但是,这些模型仅接受稀疏的手工特征,并且无法捕获复杂的语义效果。考虑到像Bert这样的预训练的语言模型(Devlin等人,2019年)和罗伯塔(Liu等人,2019年)在广泛的
人工智能 (AI) 为药物发现带来了巨大进步,但识别具有最佳物理化学和药理学特性的命中化合物和先导化合物仍然是一项重大挑战。基于结构的药物设计 (SBDD) 已成为一种有前途的范例,但固有的数据偏差和对合成可及性的无知使 SBDD 模型与实际药物发现脱节。在这项工作中,我们探索了两种方法,Rag2Mol-G 和 Rag2Mol-R,它们都基于检索增强生成 (RAG) 来设计适合 3D 口袋的小分子。这两种方法涉及根据生成的小分子在数据库中搜索可购买的类似小分子,或从数据库中可以放入 3D 口袋的新分子中创建新分子。实验结果表明,Rag2Mol 方法始终如一地产生具有优异结合亲和力和药物相似性的候选药物。我们发现 Rag2Mol-R 比先进的虚拟筛选模型提供了更广泛的化学景观覆盖范围和更精确的靶向能力。值得注意的是,这两个工作流程都确定了具有挑战性的靶标 PTPN2 的有希望的抑制剂。我们高度可扩展的框架可以集成各种 SBDD 方法,标志着 AI 驱动的 SBDD 取得了重大进展。代码可在以下网址获取:https://github.com/CQ-zhang-2016/Rag2Mol。