诸如大语言模型(LLM)和视觉语言模型(VLM)之类的基础模型已显示出在许多域中的特定于任务特定模型,几乎没有进行微调。这种新的人工智能范式激发了我们将预训练的VLM应用于文本到视频检索。尽管这些模型无法直接处理视频,但我们研究了一个简单的解决方法:提示VLM提供视频帧的详细描述,以生成可用于语义文本搜索的文本文档。我们表明,这种简单的方法为使用MSR-VTT基准测试提供了零拍视频检索的竞争基线,这表明将基础模型应用于视频检索的任务。我们提供了广泛的消融,以了解系统的哪些部分对于性能很重要,并突出了许多将VLMS应用于视频检索的途径。
深静脉血栓形成(DVT)和肺栓塞(PE),称为静脉血栓栓塞(VTE)是心肌梗塞和中风后心血管死亡的第三个原因。1所报告的单位状态DVT的年发病率为每100,000人80例,其中60%以上将发展为PE。尽管PE通常是无偶像的,但它是DVT的并发症,可能导致住院,发病率高和死亡率。2 DVT和/或PE患者的“黄金标准”治疗是抗凝治疗(AC)治疗。然而,对于患有现有或有VTE风险的高臭虫风险患者,AC治疗是禁忌的。3,特别是,在颅内出血或其他主要出血,活跃的胃肠道出血,威胁性的焦点,前启示剂和eClampsia,恶性高血压,脑部手术和脊柱手术中,AC治疗是由ICD-9-9-CM诊断所确定的。3需要防止这些患者的PE发生,支持使用永久性或可检索的下腔静脉过滤器(IVCF)。1
Bose-Einstein凝结(BEC)是骨颗粒在单个特征状态中形成宏观种群的量子状态。预测该状态的理论[1]在实验室[2,3]中等待了70年,这是一个里程碑的成就,在超级原子和量子模拟的领域中启动了将近三十年的富有成果的研究[4]。尽管取得了进展,但BEC的常用测量技术在它们提供的信息中是不完整的。成像是BEC测量技术的核心。通过通过原子云闪耀光并记录其铸造的阴影,可以在给定状态下提取原子的密度。通常可用两种成像模式:原位,在陷阱内部或旋转时间(TOF)时对云进行成像。通过打开陷阱并记录云膨胀后的原子密度来执行后者[5];它是测量光学“远场”强度的类似物。如果粒子在扩展过程中不相互作用,并且云的初始尺寸相对于最终扩展的大小而忽略了,则TOF图像提供了云的动量分布,这是波函数的空间傅立叶变换的幅度。如果存在相互作用,但最终密度足够低,以至于它们变得可以忽略不计,则测得的动量分布的动能会反映初始动力学加相互作用能。然而,BEC是量子对象,因此它们是物质波[6],其特征是幅度和相位。这些成像方式仅捕获状态的一部分,因为它们在单个时间点和单个平面上,原位或TOF中单独测量密度。因此,要表征一个BEC,随着它们的发展,必须在空间中获得其幅度和相位的完整地图。因此,依靠这两种方式,Inno-
摘要。在卫星遥感应用中,增强了2级(L2)算法的精度,在很大程度上依赖于对紫外线(UV)(uv)的表面反射的准确估计(visible(vis)光谱。然而,L2算法与表面反射检索之间的相互依赖性构成了挑战,因此需要采取另一种方法。为了解决这个问题,许多卫星属性会产生兰伯特等效的反射性(LER)产品作为先验的表面反射数据。但是,这通常会导致这些数据低估。这项研究是使用半经验的双胎反射分布函数(BRDF)模型得出的背景表面反射(BSR)的适用性的第一个。这项研究将BRDF模型的应用在440 nm处的高光谱卫星数据进行了应用,旨在提供更现实的前段表面反射数据。在这项研究中,使用了地理环境监测光谱仪(GEMS)数据,对GEMS BSR和GEMS LER进行了比较分析显示,相对根平方误差(RRMSE)的精度有3%的相对根平方误差(RRMSE)的精度有所提高。此外,跨不同土地类型的时间序列分析表明,BSR比LER表现出更大的稳定性。为了进一步验证,使用地面真实数据将BSR与其他LER数据库进行了比较,从而产生
摘要....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2
填字游戏 (CP) 解析是一种流行的游戏。与几乎所有其他人类游戏一样,可以自动解决这个问题。CP 求解器将其纳入约束满足任务,其目标是最大限度地提高用与线索一致并与谜题方案连贯的答案填充网格的概率。这些系统(Littman 等人,2002 年;Ernandes 等人,2005 年;Ginsberg,2011 年)严重依赖于每个线索的候选答案列表。候选答案的质量对 CP 解析至关重要。如果正确答案不在候选列表中,则无法正确解答填字游戏。此外,即使是排名较差的正确答案也会导致填字游戏填写失败。答案列表可以来自多个求解器,其中每个求解器通常专门解决不同类型的线索,和/或利用不同的信息来源。此类列表主要通过两种技术检索:(1)使用线索表示通过搜索引擎查询网络;(2)查询包含先前回答过的线索的线索-答案数据库。在本文中,我们专注于后者。在从线索-答案知识源中检索候选答案的问题中,答案根据查询线索与数据库中的线索之间的相似性进行排序。相似性由搜索引擎提供,搜索引擎为每个检索到的答案分配一个分数。已经实施了几种方法,通过学习排序策略对候选列表进行重新排序(Barlacchi 等人,2014a;Barlacchi 等人,2014b;Nicosia 等人,2015;Nicosia 和 Moschitti,2016;Severyn 等人,2015)。这些方法需要一个训练阶段来学习如何排序,并且大多数情况下在重新排序方面有所不同。
DTI 通知:230419-01 主题:军事记录检索过渡影响:退休和退役空军成员 BLUF:军事记录检索功能现已在 myFSS 上可用。已在 myPers 中提交的事件将继续在 myPers 中处理。从即日起,退休和退役空军成员应使用 myFSS 提交军事记录检索请求。通过 myPers 提交的事件将不再被接受,需要通过 myFSS 提交。myPers 中的先前事件将被处理。请不要通过 myFSS 提交重复请求。要在 myFSS 中提交新请求,请导航至 myFSS 登录页面,然后在位于页面顶部的知识文章搜索栏中输入知识文章的标题:
摘要生成AI(Genai)和自然语言处理(NLP)近年来已经显着提高,表现出突破并推动了文本挖掘中的准确率。在许多应用程序域中都观察到级联效应,涵盖文本分析,问答,分类和新的文本内容生成。后者允许许多最终用户将AI视为现成的解决方案,以优化其日常工作流程。然而,由于可信赖和未经验证的内容可以轻松产生,黑暗和明亮的侧面潜伏在文本内容产生后面。这在我们的社会中引起了重大挑战:假新闻。尽管假新闻已经存在一段时间,但它仍然是一个未解决的问题。生成的AI通过实现自动生产大量高质量的,单独针对的假件内容来将其提高到一个新的水平。我们的工作是Loyfanmi(与健康相关的虚假新闻)项目的一部分,该项目的重点是使用NLP,语言模型和检索功能增强的生成(RAG)系统来缓解与健康有关的假新闻。我们提出了一种新的块机制,该机制简化了整个抹布框架管道。Bert和Bert+RAG已在2000年与健康相关的文章的数据集中进行了比较,将与健康相关的假新闻分类任务进行了比较,分为两类(“假”和“可信”)。初步实验结果揭示了准确性,回忆和F1得分的提高。
基于关键字的搜索是当今数字库中的标准。然而,像科学知识库中的复杂检索场景一样,需要更复杂的访问路径。尽管每个文档在某种程度上有助于一个领域的知识体系,但关键字之间的外部结构,即它们的可能关系以及每个单个文档中跨越的上下文对于有效检索至关重要。遵循此逻辑,可以将单个文档视为小规模的知识图,图形查询可以提供重点文档检索。我们为生物医学领域实施了一个完全基于图的发现系统,并证明了其过去的好处。不幸的是,基于图的检索方法通常遵循“确切的匹配”范式,该范式严重阻碍了搜索效率,因为确切的匹配结果很难按相关性进行排名。本文扩展了我们现有的发现系统,并贡献了有效的基于图的无监督排名方法,一种新的查询放松范式和本体论重写。这些扩展程序进一步改善了系统,因此由于部分匹配和本体论重写,用户可以以更高的精度和更高的回忆来检索结果。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。