准确预测分子活性对于有效的药物发现至关重要,但由于数据集有限和嘈杂,因此仍然具有挑战性。我们引入了相似性 - 量化的相对学习(SQRL),这是一个学习框架,将分子活性预测重新定义为结构相似的化合物对之间的相对差异学习。sqrl使用预先计算的分子相似性来增强图形神经网络和其他体系结构的训练,并显着提高了药物疾病中常见的低数据表格的准确性和概括。我们通过在公共数据集和专有行业数据上进行基准测试来证明其广泛的适用性和现实世界的潜力。我们的发现表明,利用相似性相对差异为分子活性预测提供了有效的范例。
Bigdan Ionescu 1,Henning M£2,Maria Drold 1,JohannesRèuckert3,Asma Ben Abacha 4,Ahmad Idrisssi-Yagir 3,Schaltic 8,Schaltic 8,System Schmidt 7,Tabea M.G.Pakull 8 , Hendrik 3 , Benjamin Bracke 3 , Christoph M. Friedrich Benjamin 11 , Benjamin 11 , Emmanuelle Esperan 11 11 , Yeuan Fu 12 , Steven A. Hicks 11 , Michael A. Riegler 13 , Andrea Stor, Andrea 13, P˚al Halvorsen 13, Maximilian Heinrich 14,
源文档的。 此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。 ,2024)。 044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document. 尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。 此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。 060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。 ,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效? 069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。。此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。,2024)。044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document.尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效?069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。071在我们的方法中,大型视觉模型072(VLM)处理单个或多个检索的文档图像,不仅为074产生了对074用户查询的答案,而且还返回了075框架内的相关区域内的相关区域。076如图1所示,此方法通过视觉上指示文档中的确切078位置来启用di-077 rect归因,从而允许用户在080原始上下文中快速检查生成答案的原始上下文中的支持证据。VLMS 081不受文档格式或渲染的限制,082
检索型发电(RAG)已从学术研究人员和行业中获得了重要的关注,作为解决大型语言模型(LLMS)知识限制的有前途解决方案。但是,LLM在使用抹布时经常表现出幻觉现象。为了有效地解决各种问题类型的幻觉现象,我们采用了各种选择和策略。具体来说,我们利用Llama3的详细自我验证能力来确定给定的参考是否可以充分回答一个特定的问题,从而避免幻觉现象。随后,通过利用知识图来增强我们的知识基础,我们可以增强上下文理解并减少抹布的幻觉。llm的高级能力进一步使我们能够有效整合和解释知识图的内容,从而确保更加连贯和准确的响应。最后,对这些不同问题类型的有效处理使我们能够根据每个查询的特定要求提供精确且有用的答案。通常,我们的工作全面利用LLM的高级功能来增强我们信息检索系统的鲁棒性和信誉。这种多方面的方法,再加上对参考文献的细致评估,可确保提供高质量的重音,而与问题的复杂性无关。
本文介绍了一种创新的检索增强生成方法,以进行相似性搜索。所提出的方法使用生成模型来捕获细微的语义信息并基于高级上下文理解检索相似性分数。该研究重点介绍了包含从生物医学领域提取的100对句子的生物群数据集,并引入了相似性搜索相关结果,这些结果优于先前在该数据集上获得的句子。通过对模型敏感性的深入分析,研究确定了最佳条件,导致最高相似性搜索准确性:结果揭示了较高的Pearson相关评分,在0.5的温度下达到0.905,并且提示中提供的20个示例的样本大小为20个示例。这些发现强调了生成模型进行语义信息检索的潜力,并强调了相似性搜索的有希望的研究方向。
摘要 — 本研究探讨了将检索增强生成 (RAG) 集成到已使用混合专家 (MoE) 的 Mistral 8x7B 大型语言模型 (LLM) 中,以解决其在复杂信息检索和推理任务中现有的局限性。通过利用 Google BIG-Bench 数据集,我们进行了广泛的定量和定性分析,以评估增强模型的性能。结果显示准确率、精确率、召回率和 F1 分数均有显著提高,凸显了增强模型在生成语境丰富、准确且细致入微的响应方面的卓越能力。这种集成展示了一种克服传统 LLM 固有局限性的有希望的方法,标志着人工智能研究的关键进展。我们的研究结果有助于持续开发更具适应性、更高效、更智能的人工智能系统,为人工智能在各个领域的应用开辟新的途径。该研究承认与数据集范围和计算需求相关的限制,并为未来的研究提出了进一步完善和扩展模型适用性的方向。
机器人可以探索和学习多少没有限制,但是所有这些知识都需要搜索和可行。在语言研究中,重新增强生成(RAG)已成为大规模非参数知识的工作室,但是现有技术并未直接转移到具有多模式的体现域,数据高度相关,感知需要抽象。为了应对这些挑战,我们引入了体现rag,该框架可以通过非参数存储器系统来增强体现代理的基础模型,该系统能够自主构建导航和语言生成的层次结构知识。体现的rag依处理各种环境和查询类型的各种空间和语义分辨率,无论是针对特定对象还是对氛围的整体描述。在其核心上,体现rag的记忆是作为语义森林结构的,以不同级别的细节存储语言描述。这个分层组织允许系统在不同的机器人平台上有效地生成上下文敏感的输出。我们证明,体现的抹布有效地将抹布桥接到机器人域,成功处理了19个环境中的200多个解释和导航查询,突显了其对常规非参数系统的预期用于实施剂。
自动化材料合成需要历史数据,但从出版物中提取详细数据和元数据具有挑战性。我们制定了初步策略,使用大型语言模型从材料科学文章中快速、自主地提取数据,数据格式可由材料数据库管理。我们使用聚合物纳米复合材料的子域作为示例用例,并通过手动验证演示了概念验证案例研究。我们使用 Claude 2 chat、Open AI GPT-3.5 和 4 API 提取表征方法和有关样品的一般信息,利用零次和少量提示来引出更详细和准确的响应。我们在样本提取任务中使用 Claude 2 chat 获得了最佳结果,F1 得分为 0.88。我们的研究结果表明,语言模型对于从文献中更有效、更实用地检索合成参数非常有用。
摘要 — 在经典的隐私信息检索 (PIR) 设置中,用户想要从数据库或分布式存储系统 (DSS) 中检索文件,但不向保存数据的服务器透露文件身份。在量子 PIR (QPIR) 设置中,用户通过从服务器接收量子信息来私密地检索经典文件。Song 等人在复制服务器的情况下处理了 QPIR 问题,包括无合谋和除一个服务器外所有服务器都合谋的情况。在本文中,QPIR 设置被扩展以考虑最大距离可分 (MDS) 编码服务器。所提出的协议适用于任何 [ n, k ] -MDS 代码和 t -合谋,其中 t = n − k 。与以前的情况类似,实现的速率比经典对应物中已知或推测的速率更好。此外,还演示了如何调整协议以从使用局部可修复代码 (LRC) 编码的 DSS 中实现显著更高的检索率,其中修复组不相交,每个修复组都是一个 MDS 代码。
