摘要 — 电动机广泛应用于各个行业,根据其应用,电动机需遵守特定的噪声标准。尽管无刷电动机的性能优于有刷电动机,但由于其机械、电气和电子元件,无刷电动机会产生噪声。本研究调查了通过驱动器改变开关频率对外转子无刷直流电动机噪声的影响。对具有不同开关频率的表面贴装磁性无刷电动机进行了测试,并提供了有关控制无刷电动机的控制板的详细信息。在消声静室中使用 dB 计进行了声音强度和谐波测量。改变开关频率也会影响电动机速度,因此在研究期间进行了两次不同的测量。在一次测试中,BLDC 电动机速度保持恒定,而在另一次测试中,占空比保持恒定以进行测量。观察到开关频率的增加以降低电动机噪声。然而,这种增加也会导致开关元件损耗,从而导致温度升高。通过调整占空比并改变开关频率,外转子无刷直流电动机的速度保持恒定。在 12-28 kHz 范围内增加开关频率可降低测量到的噪声,同时导致不同频率范围内的温度升高。研究结果表明,现有的 BLDC 电机和驱动器系统在 16-18 kHz 范围内的噪声和温度方面具有最佳性能。
无刷直流电机 大多数电动直流电机使用碳“刷”将电流传导至“换向器”,用于顺序极化电机绕组并引起旋转。 Racor 的无刷直流电机绕组按顺序极化,通过由 DSP 控制的高速电子开关旋转泵轴,而不是通过电刷在金属换向器上摩擦并产生火花。 没有电刷意味着不会磨损,燃料中也不会出现电刷碎片。 无刷电机比有刷电机更高效,具有无与伦比的可靠性和长寿命。 无刷电机的轴直接驱动转子齿轮,形成独特的正排量泵组件。
ESA濒危物种法案1973年的康涅狄格州能源与环境保护部CSWG竞争性州野生动物授予EC ESTERTER ESTERN COTTONTAIL ESF ESF纽约州立大学林业林业的环境Scholl lpwg土地保护工作组Meifw Meifw缅因州缅因州内陆鱼类和MMMR MASSACHUSETT SERVERATIT NE NEFES NETED NE NEFENF>Fish and Wildlife, New England Field Office NEC New England Cottontail NECLMT NEC England Cottontail Land Management Teams NERR National Estuarine Research Reserve NEZCC New England Zoo Conservation Collaborative NFWF National Fish and Wildlife Foundation NGO Non-governmental Organization NHFGD New Hampshire Fish and Game Department NWR National Wildlife Refuge NRCS USDA, Natural Resources Conservation Service NYDEC纽约环境保护部OWG外展工作组PFW鱼类和野生动植物PMWG人口管理工作组RCN区域保护需求计划RIDEM RHODE ISLAND ENVIRENAMEAL ENVOROMENAL MANDICENAL RMWG研究和监测工作组RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ鱼类和野生动物,新英格兰南部/纽约野生动物沿海计划SWG州野生动物赠款新罕布什尔大学新罕布什尔大学新罕布什尔大学合作社扩展扩展URI URI UNISWER UNISWER ISLY岛USFWS USFWS USFWS USFWS美国鱼类和野生动物服务USGS USGS
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
一种液体排斥表面,即光滑液体注入多孔表面(SLIPS),通过动态液体/液体/蒸汽接触线运动来排斥液体。[6] 所需的光滑液体必须与接触的液体介质不混溶且不会被其浸出,以避免润滑剂损失和污染。确保此类涂层的长期坚固性及其润湿性能仍然具有挑战性。[7] 因此,需要其他方法来创建具有良好液体排斥性的表面。提出了一种替代策略,即将柔性大分子刷(如 PDMS 和全氟聚醚)共价连接到光滑表面上以排斥液体。[8] 这个想法是,柔性大分子的高流动性使它们能够作为具有广泛表面张力的液体的液体状润滑层。[8c] 由于与表面的共价连接,这些分子结构不会被接触液体溶解或取代。具体而言,涂覆有PDMS刷的表面表现出优异的耐高温处理、光降解甚至刮擦性能。[8a,9] 此外,由于涂层只有几纳米厚,它们是透明的,不影响涂层表面的外观,对导热性影响也很小。PDMS刷的制备可以追溯到1970年,当时Vermeulen等人通过气相反应16小时在玻璃表面沉积了低液体粘附性的PDMS刷层。[10] 然而,从表面接枝聚合物通常基于复杂且耗时的制备程序,限制了它们在实际应用中的使用。McCarthy等人系统地研究了在表面制造PDMS刷的新策略。[11] 他们提出使用二甲基二甲氧基硅烷(DMDMS)作为单体,在硫酸作为催化剂的情况下聚合PDMS刷。 [8a] 用大量溶剂冲洗表面以去除残留的低聚物和酸,将反应溶液(包括 DMDMS、硫酸和异丙醇)干燥一段时间后,在硅(或玻璃)表面形成具有低液体粘附性的 PDMS 刷。与 McCarthy 的方法相比,我们开发了一种更简单的方法,无需催化剂即可将 PDMS 刷接枝到表面上。此外,我们还表征了 PDMS 刷在胶带剥离、超声处理、滴落滑动腐蚀、加热、紫外线降解、酸腐蚀等条件下的稳定性。McCarthy 等人仅研究了在 100°C 下加热的影响。
在输出图像中分别k Depthise(I,J,K)和k点(i,j,k)代表可分开的卷积的操作。
摘要:在这项工作中,我们报告了一种合成精心设计的瓶洗聚合物的策略。通过可逆的添加 - 碎片链转移(RAFT)聚合制备了聚苯乙烯(1 -PS N)的重生(1 -PS n)的重生二乙酸酯。重氮可以忍受筏聚合条件,并保留在屈服的PS宏观工具的链端上。通过烯丙基PDCL/L催化剂聚合到将每个骨链在每个骨干原子上携带侧链携带的瓶刷聚合物((1 -PS N)M s)。 与此同时,使用PEG(2 -PEG)的重18酶乙酸盐含量分子的聚合使用PD(II) - 近端(1 -PS n)M作为宏观监测剂来合成,其中包含刷状PS和聚乙烯乙二醇(PEG)的两亲性奶瓶聚合物(PEG)。 产生的两亲性(1 -PS 30)50 -b - (2 -peg)100可以在水溶液中自我组装成良好的核心 - 壳 - 壳胶束。 胶束的流体动力直径为大约。 146 nm,具有良好的生物相容性。 这些结果表明胶束在药物输送方面具有很大的潜力。将每个骨链在每个骨干原子上携带侧链携带的瓶刷聚合物((1 -PS N)M s)。与此同时,使用PEG(2 -PEG)的重18酶乙酸盐含量分子的聚合使用PD(II) - 近端(1 -PS n)M作为宏观监测剂来合成,其中包含刷状PS和聚乙烯乙二醇(PEG)的两亲性奶瓶聚合物(PEG)。产生的两亲性(1 -PS 30)50 -b - (2 -peg)100可以在水溶液中自我组装成良好的核心 - 壳 - 壳胶束。胶束的流体动力直径为大约。146 nm,具有良好的生物相容性。这些结果表明胶束在药物输送方面具有很大的潜力。
sudo dpkg -i libnvinfer7_7.2.0-1+cuda10.2_arm64.deb sudo dpkg -i libnvinfer-dev_7.2.0.2.0-1+cuda10.2_arm64.deb sudo sudo sudo sudo dpkg -i libnvinfer-plugin7.7.7.7.7.7.7.7.2.0-110.110.110.20.110.110.110.2 -plugin-dev_7.2.0-1+cuda10.2_arm64.deb sudo dpkg -i libnvonnxparsers7_7.2.0-1+cuda10.2_arm64.deb sudo sudo dpkg -i dpkg -i 2.0-1+cuda10.2_arm64.deb libnvparsers-dev_7.2.0-1+cuda10.2_arm64.deb sudo dpkg -i libnvinfer-bin_7.2.0-1+cuda10.2_arm64.deb sudo dpkg -i libnvinfer-doc_7.2.0-1+cuda10.2_all.deb sudo dpkg -i libnvinfer-samples_7.2.0-1+cuda10.2_all.deb
A09A = MTR、PMAC、MPP0921C(240VAC)0.8 HP,IP65 A09B = MTR、PMAC、MPP0921R(460VAC)0.8 HP,IP65 A09C = MTR、PMAC、MPP0922D(240VAC)1.65 HP,IP65 A09D = MTR、PMAC、MPP0922R(460VAC)1.65 HP,IP65 A09E = MTR、PMAC、MPP0923D(240VAC)2 HP,IP65 A09F = MTR、PMAC、MPP0923R(460VAC)2 HP,IP65 A10A = MTR、PMAC、MPP1002D(240VAC)2 HP,IP65 A10B = MTR、PMAC、 MPP1002R (460VAC) 2.49 HP,IP65 A10C = MTR、PMAC、MPP1003C (240VAC) 2.4 HP,IP65 A10D = MTR、PMAC、MPP1003R (460VAC) 2.5HP,IP65 A11A = MTR、PMAC、MPP1152D (240VAC) 2.2 HP,IP65 A11B = MTR、PMAC、MPP1152R (460VAC) 2 HP,IP65 A11C = MTR、PMAC、MPP1153C (240VAC) 3 HP,IP65 A11D = MTR、PMAC、MPP1153R (460VAC) 3 HP,IP65 A11E = MTR、PMAC、MPP1154B (240VAC) 3.6 HP, IP65 A11F = MTR、PMAC、MPP1154P (460VAC) 3.6 HP,IP65 A14B = MTR、PMAC、MPP1422R (460VAC) 4.5 HP,IP65 A14D = MTR、PMAC、MPP1424R (460VAC) 7 HP,IP65 A14F = MTR、PMAC、MPP1426P (460VAC) 8.4 HP,IP65 A14G = MTR、PMAC、MPP1428Q (460VAC) 9.4 HP,IP65 D09A = MTR、PMAC-无刷,24V,2 HP,IP56 D09B = MTR、PMAC-无刷,36V,2 HP,IP56 D09C = MTR、PMAC-无刷,48V,2 HP, IP56 D12A = MTR,PMAC-无刷,24V,2.5 HP,IP56 D12B = MTR,PMAC-无刷,36V,2.5 HP,IP56 D12C = MTR,PMAC-无刷,48V,2.5 HP,IP56 F17A = MTR,PMDC-有刷,12-48V,4 HP 连续,打开 X00X = 其他