begomovirus具有传染性,并且严重影响了商业上重要的食物和粮食作物。棉叶卷曲的木木病毒(Clcumuv)是巴基斯坦棉花病毒最主要的特征之一,是对棉花产量的主要限制。目前,植物基因组编辑领域正在通过CRISPR/CAS系统应用(例如基础编辑,主要编辑和基于CRISPR的基因驱动器)进行革命。CRISPR/CAS9系统已成功用于模型和作物植物中的概念概念研究,以针对生物和非生物植物应力。CRISPR/CAS12和CRISPR/CAS13最近已在植物科学中应用于基础和应用研究。在这项研究中,我们使用了一种新型的方法,基于CRRNA的CAS12A工具箱,同时在多个位点靶向Clcumuv基因组的不同ORF。这种方法成功地消除了烟熏本尼亚娜和烟草的症状。从Clcumuv基因组设计了三个单独的CRRNA,针对四个不同ORF(C1,V1和C2和C3重叠区)的特定位点。基于CAS12A的构建体Cas12a-MV是通过金门三向克隆设计的,用于精确编辑Clcumuv Genome。cas12a-MV构建体是通过使用引物UBI-Intron-F1和M13-R1的整个基因组测序来确认的。通过农业纤维化方法,在4周大的尼古蒂亚纳本田植物中进行了瞬态测定。sanger测序表明,CAS12A-MV构建体在病毒基因组的靶位点上产生了相当大的突变。此外,对Sanger测序结果的潮汐分析显示了CRRNA1(21.7%),CRRNA2(24.9%)和CRRNA3(55.6%)的编辑效率。此外,Cas12a-MV构建体通过叶盘方法稳定地转化为烟草Tabacum,以评估转基因植物对Clcumuv的潜力。进行转基因分析,对烟草的转基因植物的DNA进行了PCR,以扩大具有特定底漆的Cas12a基因。传染性克隆在感染性测定中的转基因和非转基因植物(对照)中被农民接种。与具有严重症状的对照植物相比,含有Cas12a-MV的转基因植物表现出少数症状,并且保持健康。与对照植物相比,含有CAS12A-MV的转基因植物显示出病毒积累的显着降低(0.05)(1.0)。结果表明,多重LBCAS12A系统的潜在用途在模型和作物植物中针对贝诺维病毒中发展病毒抗性。
本研究旨在使用机器学习(ML)模型将四个棉花叶的数据集准确地分类为感染或健康。细菌疫病,卷曲病毒,叶片和健康叶子被用作研究的数据集。mL是检测棉叶疾病的有用工具,可以最大程度地降低疾病率。问题在于,如果没有机器学习技术,检测疾病的疾病是非常困难的,那么就提出了机器学习模型并测试所提出模型的准确性,使用了混淆矩阵概念。研究人员已经通过使用(ML)模型进行了研究工作来诊断疾病,但其研究的缺点是不同(ML)模型给出的结果不准确。该研究的目标是使用传统技术在早期阶段鉴定影响棉花植物的疾病。但是,利用各种图像处理技术和机器学习算法(包括卷积神经网络)被证明有助于诊断疾病。这种技术方法可以简化发现叶片受损的发现,并最大程度地减少农民在发现这些疾病方面的努力。棉花是一种大规模生产的天然纤维,它在整体农艺土地的2.5%上生长。发现棉花叶疾病对于维持农作物的生产力并为农民提供可靠的收入至关重要。混淆矩阵是n x n矩阵,用于评估分类模型的性能,其中n是目标类的数量。矩阵将实际目标值与机器学习模型预测的目标值进行了比较。该技术具有四个参数,可以测试我的研究工作中给出的结果的准确性。
文章历史记录:24-045收到:20024年5月12日修订:21-JUL-20124被接受:2024年7月27日,摘要Clcuv是对全球棉花生产的威胁。棉花叶卷曲疾病是中国,巴基斯坦,印度,菲律宾和泰国等棉花生产国的风险。该病毒负责降低产量,以及骨数量及其体重的减少以及植物尺寸的总体减少。clcud是由单核病毒以及Alpha和Beta卫星引起的。有许多Clcuv菌株,例如棉叶卷曲的Kokhran病毒(Clcukov),棉叶卷曲的Alabad病毒(Clcualv),棉花叶卷卷拉贾斯坦病毒(Clcurav),棉质叶卷曲curl Multan病毒(clcumuv),棉质叶叶curl gezir gezira virus。粉虱,bemisia tabaci负责Clcud的转移。可以进行无数的测量,以最大程度地减少病毒对棉花植物的影响,去除替代寄主,早期播种,使用适当的肥料来健康植物生长,农药消除有害生物的种群(白蝇)。还设计了一些遗传学和生物技术方法来控制和发展对病毒的抗性。此外,可以通过CRISPR-CAS技术通过病原体衍生的抗性或基因编辑来产生转基因品种来产生抗性。将来,我们将能够生产具有更好抵抗疾病和更好产量的新植物品种。在本综述中讨论了Clcuv蔓延所涉及的遗传成分,其向量,传播,受影响区域,不同的菌株和管理策略。关键词:clcuv,遗传成分,α-卫星,β卫星,bemisia tabaci,管理
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
Bishop, R.L., Bart Ciastkowski, Alisa Coffin, Patricia Doherty, Terry W. Griffin, Steven W Lewis, William J Murtagh, Mark L Rentz, Stuart Riley, Stephen F Rounds, Robert Rutledge, Howard J Singer, Robert A Steenburgh, Ken Sudduth, Jehosafat J. Cabrera-guzman, Timothy B公会,T。PaulO'Brien和Endawoke Yizengaw。2022。太空环境工程和科学应用研讨会 - 电离层影响:精确应用(精密农业)航空航天公司航空航天报告号ATR-2022-00943 2022年3月1日。https://agmanager.info/news/recent-videos/global-cost-cost-assessment-ansessment-gnsss-ustage-abricultural-agricultural-ricultural-fiterivity Federal-Prodoductivity Federal-Prodoductivity Federal-Prodoductivity Federal-Prodoductivity Federal Aviation Administration(FAA)。2024。U.S. Department of Transportation Federal Aviation Administration Safety Alert for Operators (SAFO) 24002 Washington, DC 25 January 2024. https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/SAFO24002.pdf Federal Aviation Administration (FAA).2016。太阳辐射警报区域。联邦航空管理局。美国运输部。华盛顿特区。2016年2月13日https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/solarradiation Griffin,T。2024.5月10日的GPS中断将如何影响美国农场的盈利能力?FarmDoc Daily(14):103,伊利诺伊大学农业和消费者经济学系,伊利诺伊大学,乌尔巴纳 - 奇姆赛姆大学,2024年5月31日。 Lowenberg-Deboer,J.,Lambert,D.M。2005。J.V.Lightbar和Auto-Inguidance GPS导航技术的经济学。斯塔福德(ed。)精确农业'05。第五届欧洲精密农业会议,瑞典乌普萨拉。pp 581-587 Griffin,T.W.,Mark,T.B.,Dobbins,C.L.,Lowenberg-Deboer,J.2014。估计进行农场研究的整个农场成本:线性编程方法。国际农业管理杂志。4(1):21-27 Griffin,T.W.,E.A. Yeager,Griffin,T.G.,Rains,G.C.,Raper,T.B.,Lindhorst,C.M。 2023。 评估棉花的多通选择性收获系统的盈利能力。 棉花工程的进步:生产,收获和处理ASABE AIM 2023,奥马哈内布拉斯加州2023年7月10日。 2024年3月7日的当前版本在https://drive.google.com/file/d/1uyvtaik6mgcclhxmns-cuk-i3zuc0lph/view langley,Richard B. 2024。 创新见解:GNSS干扰和欺骗。 GPS世界。 2024年5月24日https://www.gpsworld.com/innovation-innovation-insights-gnss-jamming-and-spoofing/太空天气预测中心(SWPC NOAA),2024。 美国航天天气预测中心,国家气象局。 美国。 https://www.swpc.noaa.gov4(1):21-27 Griffin,T.W.,E.A. Yeager,Griffin,T.G.,Rains,G.C.,Raper,T.B.,Lindhorst,C.M。2023。评估棉花的多通选择性收获系统的盈利能力。棉花工程的进步:生产,收获和处理ASABE AIM 2023,奥马哈内布拉斯加州2023年7月10日。2024年3月7日的当前版本在https://drive.google.com/file/d/1uyvtaik6mgcclhxmns-cuk-i3zuc0lph/view langley,Richard B.2024。创新见解:GNSS干扰和欺骗。GPS世界。 2024年5月24日https://www.gpsworld.com/innovation-innovation-insights-gnss-jamming-and-spoofing/太空天气预测中心(SWPC NOAA),2024。 美国航天天气预测中心,国家气象局。 美国。 https://www.swpc.noaa.govGPS世界。2024年5月24日https://www.gpsworld.com/innovation-innovation-insights-gnss-jamming-and-spoofing/太空天气预测中心(SWPC NOAA),2024。美国航天天气预测中心,国家气象局。美国。https://www.swpc.noaa.govhttps://www.swpc.noaa.gov
由于产品的使用条件和应用差异很大,客户和/或用户应确保产品符合最终客户的要求并适合预期的最终用途。Coats 对产品的不适当或不当使用或应用不承担任何责任。所提供的信息基于当前平均值,仅供参考。Coats 对所提供信息的准确性和正确性不承担任何责任。产品信息表会不时更新,请确保您参考的是最新出版物。Coats 可根据要求为客户提供有关个别应用的建议;如果您有任何问题或疑虑,请联系我们。Coats ® 是 J. & P. Coats, Limited 的注册商标。Coats EcoVerde ™ 和 Dual Duty ™ 是 J. & P. Coats, Limited 的商标。© 版权所有 2024。
研究文章 eISSN: 2306-3599; pISSN: 2305-6622 棉花中的基本五半胱氨酸基因家族:综合基因组特征和盐胁迫响应基因表达谱分析 Laviza Tuz Zahra 1 , Fariha Qadir 1 , Abdul Hafeez 2 , Muhammad Saleem Chang 2 , Maqsood Ahmed Khaskheli 3 , Madan Lal 2,7 , Mehreen Fatima 8、Sehar Fatima 1、Ali Hamza 1、Ayesha Khalid 6、Sadia Shehzad 1、Annas Imran 1、Rida Tabbusam 1、Waseem sarwar 1、Aleena Farooq 4、Uswa Maryam 5、Muhammad Usama Javed 1、Pakeeza Aslam 1、Aliza Sarwar 1、阿里侯斯奈因·阿尔维 1、萨尔曼·阿里·苏海尔9、Ghulam Rasool 1 和 Abdul Razzaq 1* 1 拉合尔大学分子生物学与生物技术研究所,巴基斯坦 2 信德农业大学 Umerkot 分校农学系,信德省巴基斯坦 3 贵州大学农学院植物病理学系,贵州贵阳 550025,中国 4 拉合尔政府学院大学,拉合尔,巴基斯坦 5 国家生物技术和遗传工程研究所,费萨拉巴德,巴基斯坦 6 拉合尔女子大学,拉合尔,巴基斯坦 7 中国农业科学院烟草研究所,山东省青岛 266101,中国 8 联合健康科学学院; 9 拉合尔大学土木工程系,巴基斯坦 *通讯作者:biolformanite@gmail.com
1 1,北卡罗来纳州立大学,北卡罗莱纳州立大学,北卡罗来纳州27695,美国2作物和土壤科学系,北卡罗来纳州立大学,北卡罗来纳州罗利,北卡罗来纳州27695,美国3 USDA农业研究服务,基因和生物学家研究单位,Raleigh for for Raleigh for for Raleigh for for Raleigh,NC 276695,Instict,Instict,Instict,Instict,密西西比州立大学,斯塔克维尔,MS 39762,美国5植物基因组学和分子繁殖实验室,国家生物技术与遗传工程学院,巴基斯坦工程与应用科学研究所,(NIBGE-C,PIEAS,PIEAS) 2006年,澳大利亚7基因组科学与社会研究所,德克萨斯农工大学,大学站,德克萨斯州77843,美国8 USDA农业研究服务,基因组学和生物信息信息研究单元,斯通维尔,MS 38776,美国9 USDA农业研究服务,Crop Lricultural Research Service,Crop Genetics Research Nut,Crops Genetics Research Nut,Stoneville,Stoneville,Stoneville,Stoneville,MS 3877776,美国 * docentersence,美国 * docenteresces, amanda.hulse-kemp@usda.gov(A.M.H.-K。); jodi.schef fler@usda.gov(J.A.S.)1,北卡罗来纳州立大学,北卡罗莱纳州立大学,北卡罗来纳州27695,美国2作物和土壤科学系,北卡罗来纳州立大学,北卡罗来纳州罗利,北卡罗来纳州27695,美国3 USDA农业研究服务,基因和生物学家研究单位,Raleigh for for Raleigh for for Raleigh for for Raleigh,NC 276695,Instict,Instict,Instict,Instict,密西西比州立大学,斯塔克维尔,MS 39762,美国5植物基因组学和分子繁殖实验室,国家生物技术与遗传工程学院,巴基斯坦工程与应用科学研究所,(NIBGE-C,PIEAS,PIEAS) 2006年,澳大利亚7基因组科学与社会研究所,德克萨斯农工大学,大学站,德克萨斯州77843,美国8 USDA农业研究服务,基因组学和生物信息信息研究单元,斯通维尔,MS 38776,美国9 USDA农业研究服务,Crop Lricultural Research Service,Crop Genetics Research Nut,Crops Genetics Research Nut,Stoneville,Stoneville,Stoneville,Stoneville,MS 3877776,美国 * docentersence,美国 * docenteresces, amanda.hulse-kemp@usda.gov(A.M.H.-K。); jodi.schef fler@usda.gov(J.A.S.)